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Abstract
Internet of Things (IoT) has been proposed 

to be a new paradigm of connecting devices and 
providing services to various applications, e.g., 
transportation, energy, smart cities, and health 
care. In this paper we focus on an important 
issue, i.e., the economics of IoT, that can have a 
great impact on the success of IoT applications. 
In particular, we adopt and present the informa-
tion economics approach with its applications in 
IoT. We first review existing economic models 
developed for IoT services. Then we outline two 
important topics of information economics that 
are pertinent to IoT, i.e., the value of informa-
tion and proper pricing of information. Finally, 
we propose a game theoretic model to study the 
price competition of IoT sensing services. Per-
spectives on future research directions to apply 
information economics to IoT are discussed.

Introduction
Internet of Things (IoT) is a new paradigm to 
connect objects through the Internet. Devices 
and people will have the ability to transfer data 
over wired and wireless networks with minimal 
human intervention. Devices can be sensors and 
actuators that generate data and receive instruc-
tions to perform certain sets of functions. Thus, 
IoT has great potential to facilitate domain-spe-
cific usage and to improve the performance of 
the systems in many applications such as trans-
portation, energy management, manufacturing, 
and health care [1]. IoT integrates several tech-
nologies, e.g., hardware design, data communi-
cation, data storage and mining, and information 
retrieval and presentation. It also involves many 
disciplines including engineering, computer sci-
ence, business, social science, etc., to achieve 
the goals of the target applications. Therefore, 
designing and developing IoT systems and ser-
vices require holistic approaches, including engi-
neering and management, that insure efficiency 
and optimality in every part of IoT.

In this paper we focus particularly on the eco-
nomic aspects of IoT. Economic issues include 
cost-benefit analysis, user utility, and pricing. We 
first highlight the factors that make economic 
issues imperative for IoT, and then review relat-
ed works of economic models developed for 
IoT services and applications. Next we discuss 
a potential approach, i.e., information econom-
ics, and its applications in IoT. Specifically, two 

major directions are presented, i.e., the value of 
information and proper pricing of information. 
Finally, we present a demonstrative economic 
model based on game theory to study IoT sens-
ing service competition. We show the effects of 
substitute and complementary services on the 
equilibrium prices that users can use one and all 
services to obtain sensing information, respec-
tively. Finally, open research directions are out-
lined.

The remainder of this article is organized as 
follows. We present a general structure of IoT 
and discuss the economic issues. We introduce 
the concept of information economics and its 
potential applications in IoT. Then we propose a 
game theoretic model to analyze price competi-
tion of IoT sensing services. Finally, we conclude 
the article.

Economic Models of 
Internet of Things

This section first introduces an overview of IoT. 
Then we discuss economic issues and techniques 
used in IoT.

Internet of Things
IoT is a broad concept introduced to describe a 
network of things or objects. The objects can be 
sensors, actuators, electronic devices, etc., that 
are able to connect to the Internet through wire-
less and wired connections. Figure 1 shows the 
representative structure of IoT [2]. IoT can be 
divided into different tiers so that the system is 
scalable and able to support heterogeneous envi-
ronments with high flexibility and reliability.

Devices: This perception and action layer is 
composed of low-level devices such as sensors 
and actuators. The devices have limited comput-
ing, data storage, and transmission capability. 
Thus, they perform only primitive tasks such as 
monitoring environmental conditions, collecting 
information, and changing system parameters. 
Basically, the devices are the end-point of infor-
mation, i.e., sources or sinks, in IoT. They are 
generally connected with Internet gateways for 
data aggregation. They can also be connected 
to each other with peer-to-peer connections for 
information forwarding.

Communications and Networking: This layer 
provides data communications and networking 
infrastructure to transfer data of devices effi-
ciently. Typically, wireless networks are used 
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to connect the devices, which can be mobile or 
fixed, to the gateways. The data is transferred 
from gateways to the Internet via backbone net-
works such as mesh networks.

Platform and Data Storage: This layer pro-
vides facility for data access and storage. It can 
be hardware and platform in local data centers or 
services in the cloud, e.g., Infrastructure-as-a-Ser-
vice (IaaS) and Platform-as-a-Service (PaaS).

Data Management and Processing: This soft-
ware layer provides services for users to access 
functions of IoT services. It is composed of back-
end data processing, e.g., database and decision 
unit, and frontend user and business-to-business 
(B2B) interfaces.

Resource management will be an import-
ant issue for delivering efficient IoT services to 
users. Different resources have to be optimized 
to minimize the cost, to maximize utilization 
and profit, and to satisfy quality of service (QoS) 
requirements of IoT services [3]. Different layers 
involve different resources, e.g., energy used for 
the devices to operate, spectrum and bandwidth 
for wireless and wired networks to transfer data, 
computing and data storage for the platform and 
infrastructure, and data processing services for 
IoT applications.

For example, in IoT-based home surveillance 
applications, video cameras and motion sensors 
operated on a battery are deployed at different 
locations in a house. The cameras and sensors 
transfer data back to the gateway via wireless 
connections. The video and sensing data are 
stored in the cloud and processed to detect if 
there is an intrusion. If there is an intrusion, the 
service will stream video data to the end user’s 
devices and inform security officers for further 
action. In this example, for the cameras and sen-
sors, energy from the battery and wireless trans-
mission bandwidth are scarce resources to be 
optimized to meet delay and reliability require-
ments. Cloud data storage and computation 
services, e.g., virtual machine hosting, have to 
be allocated for signal detection and image pro-
cessing. Mobile services to stream video traffic 
can be regarded as a resource that needs to be 
acquired.

 Typical approaches to solve resource alloca-
tion problems in IoT are based on system opti-
mization, e.g., [3]. In system optimization-based 
resource allocation, the system has one objective 
with constraints. The system is able to control 
resource usage to achieve the optimal solution 
that maximizes/minimizes the objective while 
meeting all the constraints. For example, in [3] 
the system optimization for time slot alloca-
tion to support multi-camera video streaming 
under IoT services is proposed. The objective is 
to maximize the sensing utility by adjusting the 
data transmission rate, which is the function of a 
time slot. The constraints are to ensure the delay 
deadline of video traffic. Its optimal solution is 
obtained based on convex optimization.

Economic Issues and Incentive Approaches
Traditional system optimization may not be suit-
able for IoT in many circumstances because of 
the following reasons.

Heterogeneous Large-Scale Systems: As 
shown in Fig. 1, IoT usually involves and consists 

of a number of diverse components, e.g., several 
thousand sensors, hundreds of access points, and 
tens of cloud data centers, integrated in a highly 
complex manner. Thus, centralized management 
approaches that rely on the optimization solution 
and require complete global information, may 
not be practically feasible and efficient.

Multiple Entities and Rationality: IoT com-
ponents may belong to or are operated by differ-
ent entities, e.g., sensor owners, wireless service 
providers, and data center operators, and they 
have different objectives and constraints. System 
optimizations that support a single objective will 
fail to model and determine an optimal inter-
action among these self-interested and rational 
entities.

Incentive Mechanism: In addition to system 
performance and QoS requirements, from a busi-
ness perspective, incentives such as cost, reve-
nue, and profit are essential drivers to sustain 
IoT development and operation. Therefore, the 
design and implementation of IoT services must 
take incentive factors into account. This incen-
tive issue becomes more complex when there 
are multiple entities interacting to achieve their 
own objectives. Incentive mechanisms have to 
be carefully designed to achieve not only maxi-
mal efficiency, but also stable and fair solutions 
among rational entities.

 Therefore, economic approaches are consid-
ered an alternative when designing and imple-
menting IoT services. Economic approaches 
involve the analysis and optimization of the pro-
duction, distribution, and consumption of goods 
and services. The approaches aim to analyze how 
IoT economies work and how IoT entities inter-
act economically. In the following, we discuss 
important economic approaches and IoT related 
works.

Cost-Benefit Analysis: Cost-benefit analysis (CBA) 
is a method to estimate an equivalent money 
value in terms of benefits and costs from IoT 
systems and services. CBA involves computing 
the benefits against costs for the entities to make 
economic and technical decisions, for example, 
whether the system and service should be imple-
mented or not, which technology and design 
should be adopted, and what the risk factors 

Figure 1. Internet of Things (IoT) representative 
model.
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are. In [4] the authors present the performance 
measurement and CBA for using RFID and IoT 
in logistic applications. The authors identify the 
cost and benefit of implementing RFID proj-
ects and justify the IoT investment for a logistics 
company. CBA first determines the possible proj-
ects, designs, and their stakeholders. The met-
rics and cost/benefit elements are defined and 
calculated. Some important metrics considered 
are total cost of ownership (TCO), activity-based 
costing (ABC), net present value (NPV), and 
economic value added (EVA). Then various 
costs are classified into different categories. For 
example, the physical world costs include the cost 
of RFID tags, the cost of applying the tags to 
products, and the cost of purchasing and deploy-
ing tag readers. The syntactic cost includes the 
system integration cost, and the pragmatics cost 
includes the cost of implementing application 
solutions. Next, the potential benefits are deter-
mined, including improved information sharing, 
reduced shrinkage, reduced material handling, 
improved space utilization, etc. The stakeholders 
who receive the benefits are identified, including 
manufacturers and suppliers, retailers, and con-
sumers. Finally, the case study in the beverage 
supply chain is discussed, where actual money 
for costs and benefits are calculated and estimat-
ed. By using the CBA method, it is found that 
the benefits can be distributed among different 
parties, e.g., the brewery (28.5%), the bottler 
(19.1%), the wholesaler (24.7%), and the retailer 
(27.6%). Based on this observation, the authors 
introduce a simple cost-benefit sharing (CBS) 
scheme that allows stakeholders to achieve dif-
ferent levels of benefits.

User Utility: From economics, utility represents 
the satisfaction and preference of consumers 
when choosing products or services. The concept 
of utility has been long and extensively used in 
computer networks and distributed computing 
to provide an abstraction of system performance 
perceived by users. For example, the satisfac-
tion of network bandwidth is widely quantified 
by a concave utility function, e.g., the logarith-
mic function, which complies with the “law of 
diminishing returns”. In particular, the rate of 
satisfaction increase decreases as the bandwidth 
becomes larger. Utility is adopted as an objec-
tive function for system optimizations meaning-
fully to maximize the users’ satisfaction. In IoT, 
for example, utility is used to quantify the QoS 
performance of the sensor data collection sys-
tem for smart city [5]. The utility can be obtained 
from survey data [6]. The system is composed 
of an access point that receives data from the 
stationary or mobile data collectors. The collec-
tors gather sensing data from a number of sen-
sors. The access point receives different types 
of data, e.g., delay-sensitive and delay-tolerant, 
with different QoS requirements. The utility for 
delay, sensing quality, and trust is defined based 
on exponential, sigmoid, and power functions, 
respectively. For example, when delay increases, 
the utility decreases exponentially. The access 
point then uses the information about utility to 
optimize the revenue of sensing data collection 
services.

Utility can be used further to determine user 

demand for goods or services. Demand can be 
obtained as a function of price to indicate the 
amount of goods or services consumed by the 
users that maximize their utility. Let U(q, p) 
denote the utility given that users consume 
goods or services with amount q and price p. The 
demand is obtained as D(p) = arg maxq U(q, p). 
Based on this fact, service providers can set the 
price accordingly.

Market and Pricing: Markets are economic systems, 
procedures, social relations, and infrastructure 
established to support the exchange of goods and 
services. Through trading in the market, sellers 
offer goods or services to buyers who pay money 
to the sellers. Pricing is an essential mechanism 
of the market to ensure the efficiency of trad-
ing, i.e., sellers gain the highest profit while buy-
ers maximize their satisfaction. IoT application 
markets are introduced in [7]. The authors in 
[7] highlight that the IoT application markets 
can imitate that of the mobile application mar-
ketplace, e.g., the Apple AppStore and Google 
Play. They also propose that the IoT application 
marketplace should focus on the data market, 
and introduce a basic IoT marketplace structure. 
In the proposed marketplace, IoT devices are 
connected with a middleware and data broker. 
The data broker sells its data in the application 
markets of the IoT marketplace. Buyers can pur-
chase and use the data for their software applica-
tions. Nonetheless, the authors do not discuss the 
methods of pricing in the IoT marketplace.

In the literature, different approaches can be 
adopted for IoT service and data pricing.

Market Equilibrium: This approach consid-
ers demand from buyers and supply from sell-
ers, respectively. The demand decreases while 
the supply increases as the price increases. Mar-
ket equilibrium is the point where supply equals 
demand. The authors in [8] adopt this market 
equilibrium pricing for IoT-based multi-modal 
sensor networks in a monopoly setting, i.e., one 
seller in the market. A sensor owner as a seller 
sells data to users who are buyers. The demand 
is determined by the users’ preference for buy-
ing the sensor data that maximizes their utili-
ty given their budget. The supply is determined 
by the sensor owner’s optimal strategy of sell-
ing the data that maximizes the profit given the 
cost of producing the data. The market is cleared 
and the equilibrium price is obtained when the 
demand and supply balance. The authors apply 
this pricing scheme to target tracking applica-
tions.

Duopoly and Oligopoly Market: Duopoly 
and oligopoly are the market structures with two 
sellers and more than two sellers, respective-
ly. In duopoly and oligopoly markets, to maxi-
mize profits, sellers compete with each other in 
terms of price or supply quantity, referred to as 
the Bertrand or Cournot competition models, 
respectively. Game theory is a useful tool to ana-
lyze the Nash equilibrium solution. The authors 
in [9] study the monopoly and oligopoly markets 
of cloud resource pricing to support IoT services. 
Users choose a seller if their utility from using 
cloud resources minus the price is positive. If 
there are multiple sellers, the seller that yields 
the maximum utility minus price is selected by 
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the users. The authors study important proper-
ties of Nash equilibrium prices, e.g., the existence 
of the Nash equilibrium.

Auctions: Auctions can be used as a pricing 
mechanism for IoT services. There are differ-
ent types of auctions, e.g., single-side and dou-
ble-side auctions. In single-side auctions, one 
seller auctions goods or services by requesting 
bids from multiple buyers, or one buyer receives 
asks from multiple sellers and chooses the best 
seller. Alternatively, in double-side auctions, 
multiple sellers and buyers submit their asks 
and bids, and the auctioneer determines sets 
of winning sellers and buyers, clearing prices, 
and goods or services allocation. More details 
of auctions and their applications in data com-
munications can be found in [10]. Auctions are 
also adopted in IoT services [12] particularly for 
crowdsourcing of target tracking applications. 
The fusion center needs to collect sensing data 
from different sensors to determine the state of 
the target. Thus, the fusion center requests bids 
from sensors and chooses the winning sensors 
from which to buy the sensing data. The solution 
of the auction is obtained from solving the mul-
tiple-choice knapsack problem to achieve maxi-
mum utility for the fusion center.

Figure 2 shows the different market structures 
applicable to IoT. In addition to sensor data and 
cloud services, there are other resources and ser-
vices in IoT that can be traded by adopting mar-
ket and pricing mechanisms.

•Energy is used to power a variety of IoT 
components, e.g., sensors, data gateways, base 
stations, data centers, and backbone and edge 
networks. In smart grids, energy can be traded 
in utility markets [13]. In monopoly or oligop-
oly markets, a utility company (companies) can 
optimize the prices of energy supplied to data 
centers and wired and wireless networks to max-
imize their profits given their energy demands.

•Spectrum and network bandwidth are scarce 

resources, especially in wireless networks. In cog-
nitive radio networks, spectrum can be traded in 
a market in a highly dynamic fashion. Specifically, 
licensed users can sell their free spectrum to unli-
censed users to earn more revenue and improve 
spectrum utilization. Various trading models have 
been introduced, including auctions [10].

•Data and information services can be offered 
and integrated to support IoT applications. Such 
services are, for example, information search-
ing, data storage and mining, and information 
security protection. The concept of “anything as 
a service (XaaS)” has been introduced recent-
ly, which allows any resources to be treated and 
used as services. The typical ones are software 
as a service (SaaS) and monitoring as a service 
(MaaS). The authors in [11] propose using a con-
tract theory to study data mining services that 
allow data owners to sell their data to the data 
collector. To protect the privacy of data owners, 
the data collector performs data anonymization, 
and resells the anonymized data to data miners. 
The data collector optimizes choices of contracts 
based on data quality, privacy requirement, and 
payment proposed to the data owners so that 
profit is maximized.

In IoT, data and information can be treated as 
resources and services that have to be optimized, 
especially to maximize their utilization, as well as 
the revenue and profit of owners and providers. 
In the next section we will present an overview 
of information economics that can be applied to 
IoT. Note that despite their subtle difference, we 
use “data” and “information” interchangeably in 
the rest of this article to simplify our explanation.

Introduction to 
Information Economics

Information economics focuses on various 
aspects of information in economy. Information 
has a unique feature in that it can be easily cre-

Figure 2. Different market structures.
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ated, but it possesses diverse levels of reliability 
and trust. Information can be used to make a 
decision in various problems. Thus, the value of 
information has to be determined. In this section, 
we briefly discuss two major aspects of informa-
tion economics, i.e., the value of information and 
the proper pricing of information.

Value of Information
Information is used in decision making to 
achieve the goal of systems and services. Infor-
mation can change the knowledge of a decision 
maker on a particular subject. Let the knowledge 
be represented by a probability distribution of 
state x. If information y is used in decision mak-
ing, that yields a payoff to the decision maker. 
The value of information is defined as follows 
[14]: v(x, y) = π(x, ay) – π(x, a0), where π(x, a) is 
the payoff given state x and decision a. ay and a0 
are the decisions after and before having infor-
mation y, respectively. The value of information 
can be positive, zero, or negative, depending on 
the quality of the information.

The value of information facilitates system 
design in the following ways [14].

Optimal Decision: Given the knowledge of 
system states, an optimal decision can be made 
to maximize expected payoff, which is defined 
as follows: maxa ∫X π(x, a)p(x|y)dx, where X is the 
state space, and p(x|y) is the probability distri-
bution of state x conditioned on the available 
information y.

Information Source Selection: Since the pay-
off depends on information y, its source has to 
be evaluated and optimized. In IoT, there can be 
many sensors performing similar sensing tasks. 
The information from the sensor that yields the 
highest value of information, i.e., making the 
best decision, should be chosen.

Information System Optimization: Howev-
er, collecting information to make an optimal 
decision also incurs a certain cost. In IoT, the 
sensors consume energy and bandwidth to collect 
and transfer sensing information. Information 
processing uses computing resource from cloud 
services. Therefore, information system optimi-
zation is important to measure all the costs and 
trade offs with the value of information. The dif-
ference between value and cost is called infor-
mation gain, which should be maximized for the 
designed information system.

The value of information analysis has been 
applied to sensor networks, which are an essen-
tial part of IoT. For example, the authors in [15] 
analyze the value of information in energy-con-
strained intruder tracking sensor networks. The 
value of information depends on the damage that 
can be avoided by having additional information. 
The damage is defined as a function of tracking 
error. The value of information is the difference 
between the maximum damage when the tracking 
sensor network is not deployed, and the actual 
damage if tracking information is available. The 
same authors show the usefulness of the analysis 
when optimizing data transmission for underwa-
ter sensor nodes such that the value of informa-
tion is maximized. In particular, an autonomous 
underwater vehicle (AUV) travels to collect data 
from sensors. Not only the decision on which 
and when sensors should transmit data about an 

intruder, but also the traveling path of the AUV 
to collect sensor data are optimized.

Proper Pricing of Information
Another aspect of information economics is 
treating information as an intangible good to be 
sold in a market. Information good has unique 
characteristics.

Quality Dependent Good: Consumers value 
information differently. The value of information 
depends on reputation and quality more than 
quantity. Additionally, as mentioned previous-
ly, the value could depend on the improvement 
of decision making and consequently sources of 
information.

Different Cost Structure: There are differ-
ent levels of costs. The fixed cost incurred from 
information system design, development, and 
deployment is higher than the variable cost for 
producing information, and they are higher than 
the cost for reproducing and storage. For exam-
ple, deploying sensors and communication infra-
structure requires significant investment.

Versioning and Bundling: Information can be 
offered in different versions, e.g., with different 
levels of quality. For example, IoT sensing data 
can be offered with different resolution, depend-
ing on application requirements. Additionally, 
different sets of information can be bundled to 
enhance their values. In IoT, multi-modal sensor 
data, e.g., from motion detectors and video cam-
eras for surveillance applications, can be used 
jointly to improve detection performance.

Because of the unique features of information 
good, pricing mechanisms for selling information 
have to be developed differently from those of 
other tangible goods. In the IoT context, the fol-
lowing issues can be studied.

Choices of Pricing: To obtain IoT sensing infor-
mation and services, different pricing choices can 
be employed. Transaction based pricing charges 
users when they access information and services. 
Information/time unit pricing charges users accord-
ing to the amount of information or time taken to 
access services. Subscription based pricing allows 
users to access information and services for a cer-
tain time period. For example, transaction based 
pricing could be suitable for sensing information 
search, while information/time unit pricing is suit-
able for streaming sensing data, e.g., video.

Profit and Cost Optimization: As is typical 
for IoT information and service providers, profit, 
i.e., revenue minus cost, must be maximized. This 
can be achieved through different approaches. 
As investment accounts for a major cost of IoT, 
IoT infrastructure has to be optimally designed 
and deployed, e.g., how many and where sensors, 
gateways, base stations, and data centers should 
be deployed. Sensing information collection and 
service delivery incur a certain cost, e.g., energy 
and network bandwidth. The quality of informa-
tion and services, which affects resource usage 
and demand, can be optimized jointly with price 
to achieve maximum profit.

Price Competition: It is common to have mul-
tiple IoT information and service providers in the 
market, and thus competition is inevitable. Game 
theory is used to analyze the pricing strategies of 
service providers. However, new game models 
have to be developed, taking the unique charac-
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teristics of information into account. For exam-
ple, they have to incorporate different choices of 
pricing and different cost structures. Moreover, 
competition is affected by information demand, 
which depends on the value perceived by users.

In the next section we propose a simple game 
theoretic model to analyze the price competition 
for IoT sensing information.

IOT Service Competition
In this section we demonstrate an example model 
of information economics to address IoT service 
pricing competition. We first describe the sys-
tem model of the IoT sensing information mar-
ket. Then we present a simple noncooperative 
game formulation. Some numerical results and 
outlooks for possible extensions are discussed 
afterward.

Sensing Information Market
We consider S IoT services that compet-
itively sell event detection or environmental 
sensing information to users. Without loss of 
generality, sensing information is binary, i.e., 
it indicates whether an event happens or not. 
However, a sensing error can occur. The detec-
tion probability of service s is denoted by Pd(s), 
and thus missed detection probability is 1 – 
Pd(s). The false alarm probability is denoted 
by Pf(s). Missed detection is an error by which 
an event happens, but the sensing information 
reports no event. By contrast, a false alarm is 
an error by which an event does not happen, 
but sensing information indicates the presence 
of the event.

Users can buy sensing information to be used 
for their own applications. All the users are 
charged the price p(s) to buy sensing informa-
tion from service s. The users can buy sensing 
information from a single service or multiple 
services. For the former, the user regards the 
sensing information as the “substitute good” that 
the user can switch to buy from the best ser-
vice. In contrast, for the latter, the users treat 
the sensing information as the “complementary 
good” that the user has to buy from all services if 
needed. When the users buy sensing information 
from multiple services, the information can be 
combined, i.e., fusion, to obtain better sensing 
accuracy. Accordingly, the users will pay all the 
services from which they buy the sensing infor-
mation. We consider two common fusion rules, 
i.e., OR and AND. For the OR fusion rule, if 
sensing information indicates that there is an 
event, the user will conclude that the event hap-
pens. In contrast, for the AND fusion rule, all of 
the sensing information must indicate that there 
is an event, so that the user will conclude the 
event happens.

One example of the sensing information 
market is in cognitive radio networks. Spectrum 
sensing networks composed of spectrum sensor 
devices can be deployed by third parties as IoT 
services to monitor spectrum activity on a cer-
tain band. The spectrum sensing services can sell 
their spectrum availability information to unli-
censed users for dynamic spectrum access (Fig. 3). 
The unlicensed users can choose to buy spectrum 
availability information from different sensing 
networks which charge different prices.

Game Formulation
Given the above IoT (sensing) services, we wish 
to study the competition in setting the price of 
sensing information. For the substitute case, the 
user buys sensing information from one service. 
The utility of the user buying from service s is 
defined as follows:

U(s) = vPd(s) – Pf(s) – p(s),	 (1)

where v is the weight of the detection probability 
relative to the false alarm probability and price. 
The weight is random in the user population fol-
lowing a certain distribution, e.g., uniform. The 
demand for sensing information from service 
s is generated by a user when the utility is the 
highest and above zero. It is denoted by Ds(p), 
where p = (p1, …, pS) contains the prices of all 
S services.

For the complementary case, the user buys 
sensing information from all services, the set of 
which is denoted by S. The utility of the user is 
defined as follows:

U(S) = vPd(S)− Pf (S)− p(s)
s∈S
∑ ,

 	
(2)

where Pd(S) and Pf(S) are the detection and 
false alarm probabilities from a certain fusion 
rule, respectively. Again, the demand is generat-
ed when the utility is higher than zero.

 Now, we present the noncooperative game for-
mulation of price competition among IoT services 
selling sensing information to users. The players of 
the game are the services. Their strategies are the 
prices. The payoff is the profit, which is defined as 
Fs(p(s), p–s) = p(s)Ds(p) – Cs, where Cs is the cost 
of generating sensing information of the service s. 
Because of the unique nature of the information, 
which can be reproduced and transferred to users 
without a cost, this cost is a constant and is inde-
pendent of demand and price strategy. p–s contains 
the prices of all services except service s. Then, the 
best response of the player is the price that yields 
the highest payoff, i.e., p*s(p–s) = maxp(s) Fs(p(s), 
p–s), and the Nash equilibrium is p*s(p*–s) for all 
services. Here, the Nash equilibrium is the set of 
prices that none of services can change unilaterally 
to gain a higher profit.

Numerical Results
We show the numerical results to demonstrate 
the sensing information pricing. To ease the 
presentation of results, we consider two services 

Figure 3. Spectrum sensing service example.
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selling sensing information to a population of 
users, i.e., substitute services and complementa-
ry services. Users can buy sensing information 
from one of these services or from both of the 
services. The weight of detection probability is 
uniformly distributed within the range [0, 2]. The 
detection probabilities of services 1 and 2 are 0.8 
and 0.9, and the false alarm probabilities are 0.1 
and 0.2, respectively.

Substitute Services: Figure 4 shows the demand 
for substitute services 1 and 2 when their prices 
are varied. We consider three prices of service 
1, i.e., 0.11, 0.51, and 0.91, which correspond 
to the cases of low, medium, and high prices, 
respectively. We make the following observa-
tion on demand. First, with substitute services, 
when the price of one service increases, the util-

ity of the users buying that service will decrease. 
Consequently, the user will compare the utility 
received from alternative services and switch to 
the one that yields the highest utility. Thus, the 
demand for the service with the increased price 
will decrease, while the demand for the other 
service will increase. Second, we observe that 
there are three parts of the demand for service 2. 
In the first part, the demand decreases slowly. 
This corresponds to the case where the price of 
service 2 is high so that some users have negative 
utility, and thus they will deviate from buying 
information from any service. In the second part, 
the demand decreases sharply. This corresponds 
to the case where some users find that choosing 
to buy information from service 1 yields a high-
er utility. Thus, the demand for service 1 also 
increases. In the third part, the price of service 
2 is too high so that all users will choose to buy 
information from service 1. Thus, the demand 
for service 2 is zero.

The profit of service 2 increases first and then 
decreases as the price of service 2 increases, as 
shown in Fig. 5. The highest profit is the best 
response in terms of price. We observe that dif-
ferent structures of demand result in different 
profit for service 2. This is clearly shown in Fig. 6, 
which illustrates the best responses of two ser-
vices. In the first part, the best response depends 
on the price that yields the demand that maxi-
mizes the profit of service 2. In the second part, 
the best response depends on the price at which 
users start to switch to service 1. In the third 
part, the best response is not affected by the 
price of service 2 as it is too high, and thus the 
best response remains constant.

From Fig. 6, the intersection between the best 
responses of services 1 and 2 is the Nash equilib-
rium prices. It is possible to show that the Nash 
equilibrium for information selling among sub-
stitute services always exists and is unique. The 
proof similar to that in [16] can be applied.

Complementary Services: For comparison, we con-
sider the complementary services. Figure 7 
shows the demand and profit when the OR and 
AND fusion rules are adopted. Here note that 
since the users are indifferent about the prices 
from any complementary services as given in Eq. 
2, the demands of all services are equal. Unlike 
substitute services, when the price of one service 
decreases, the demand for both services decreas-
es, since the users want to buy information from 
all the services. If one of them is expensive, the 
users will buy less from both. Additionally, we 
observe that the demand with the OR fusion rule 
decreases more slowly than the demand with the  
AND fusion rule, and also the best response of 
the AND fusion rule is smaller. This is due to the 
fact that with the OR fusion rule, the improve-
ment from higher detection probability is more 
significant than the degradation from the higher 
probability of false alarm.

Figure 8 shows the best responses of both 
services when the OR and AND fusion rules 
are applied. The Nash equilibrium prices of the 
AND fusion rule are lower than those of the 
OR fusion rule. Moreover, the Nash equilibrium 
prices of the complementary services are higher 
than those of the substitute services, thus achiev-

Figure 4. Demand of two substitute services.
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Figure 5. Profit of service 2 under two substitute services.
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ing higher profit. This is intuitive because with 
substitutability, the competition between the ser-
vices is severe and they have to lower the price 
to gain the highest profit. By contrast, with com-
plementarity, the competition is mild and they do 
not have to reduce the price too much.

Extensions
Placemeter (http://www.placemeter.com/) offers 
to buy sensing data, i.e., video from a camera, 
capturing pictures from streets in New York. 
It is advertised that the users can be paid up 
to $50 a month depending on the quality of the 
video, e.g., picture angle. Placemeter performs 
video analytics on the data to provide useful 
and sellable information, for example, to help 
businesses identify groups of potential consum-
ers and to make tourists aware of waiting lines 
at shops and museums. In the market model of 
Placemeter, multiple users, i.e., sellers, set up 
their cameras, capture video in a similar area, 
and sell the video data to Placemeter, i.e., a 
buyer. In this case, Placemeter has choices of 
acquiring the video data from different sourc-
es, which may provide similar views from the 
city. Thus, the sellers are facing a competitive 
situation to set the price to be attractive for the 
buyer. Depending on the quality of the video 
data, the buyer will quantify the utility and 
derive the information demand that will affect 
the competitive pricing of the sellers. Our pro-
posed information economic framework will be 
useful in analyzing this situation.

 In this example, clearly the market structure 
and pricing mechanism are different from com-
puter networks. The possible arising issues are 
as follows.

The value of the information has to be quanti-
fied. Different video data, after being processed, 
can yield different useful information. The utility 
of the video from different users has to be mea-
sured, and afterward the demand can be derived. 
Unlike in computer networks, the new utility and 
demand functions have to be proposed to be suit-
able for information goods. Substitutability and 
complementarity of the video data will be incor-
porated. Video pictures from a similar angle can 
be substituted as they yield similar information 
extraction performance. By contrast, video pic-
tures from different angles can be complemen-
tary, as they can be used jointly to improve the 
effectiveness of information extraction.

Information re-selling is possible. In this 
case, Placemeter can process video data and sell 
it to other businesses or customers. The differ-
ence between the price paid to the users selling 
the video data and the price obtained from the 
businesses or customers will be the revenue for 
Placemeter. Thus, it is important to quantify the 
utility of the video data so revenue is maximized.

Competition will arise when there are mul-
tiple information buyers, i.e., competitors to 
Placemeter. In this situation, the users have 
choices to sell information to multiple buyers. 
Thus, it is important to set prices accordingly. 
For example, the prices of video data can be 
lower when there are multiple buyers, as the 
sellers can gain more revenue from more buyers 
with or without a marginal cost of additional 
information capture and transfer. This hypoth-

esis can contradict the well known result. In 
traditional markets, similar to that in comput-
er networks, when there are multiple buyers, 
the prices should increase because of high-
er demand. Therefore, a new game theoretic 
model needs to be developed to analyze such 
information selling competition.

Future Work
Based on the proposed sensing service pricing 
model, the following extensions can be pursued.

Impact of Sensing Information Correlation: 
Sensing information from different services can 
be correlated. Users can selectively buy sensing 
information from only some of the available ser-
vices to lower their cost. The model to analyze the 
impact of the correlation and pricing can be built.

Collusion and the Price of Anarchy: Multi-
ple services can collude to optimize their pric-

Figure 6. Best responses and Nash equilibrium of two substitute services.
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es and obtain the highest profit. The collusion 
among services and the price of anarchy when 
the services adopt optimal pricing schemes can 
be investigated.

Time Sensitive Information: Information can 
be time sensitive. Its demand depends on time, 
e.g., the utility of sensing information decreas-
es as a function of time after it is generated. 
A dynamic game model, which takes a time 
parameter into account, is a candidate to ana-
lyze this situation.

Information Resell: Information can be repro-
duced virtually without cost. Some users may buy 
information, copy it, and resell it to other users. 
This introduces a hierarchy in the information 
market. Hierarchical games, e.g., Stackelberg 
games, can be applied to this case.

Conclusion
Internet of Things has emerged as a promis-
ing technology to connect devices and provide 
services. In this article we have considered the 
economics of IoT, which is an important aspect 
beyond system optimizations. We first present-
ed different economic approaches to address 
a variety of issues in IoT. We then specifically 
considered the value of information and proper 
information pricing. To demonstrate the appli-
cation of information economics, we presented 
the game theoretic model for sensing informa-
tion price competition. The model considers both 
the substitute and complementary services. The 
solution in terms of the Nash equilibrium was 
obtained. Finally, important research directions 
were outlined.
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