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Data-driven Thesis

274 Part of Secondary Data Methods
* Building up on last week’s session by Dr. Poonacha Medappa

1) Hypothesis development
* Behavioral / cognitive / economic understanding

* Why / how / when / mechanisms of an effect

2) Data collection
* APIs, web scraping, public databases
* Panel data: Same individuals over multiple periods

3) Hypothesis testing

* Linear regression with fixed effects
* Control for unobserved time-invariant factors

* Causal inference with quasi-experimental methods
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Do trees make our cities safer?

* In city areas with nearby trees and natural landscapes
* Less domestic violence

* On tree-lined streets
* People drive more slowly, reducing accident risk

* Trees contribute to stronger ties among neighbors
* Closer supervision of children in outdoor places

* Fewer property and violent crimes

* Adolescents live in neighborhoods with more greenery

* Display less aggressive behavior
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Classes of Variables

* 1) The outcome variable
* Dependent variable

* 2) Principal question predictor
* Variable of interest

* 3) Covariates or control predictors

* Independent control variables
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Do trees make our cities safer?

City Crime Rate | Tree Density | Population
Dallas, Texas 0.4 0.15 7,000,000
Tilburg, Netherlands 0.01 0.5 200,000
Albuquerque, New Mexico | 0.9999 0.05 1,500,000
Antwerp, Belgium 0.05 0.25 500,000

. Regression

* The outcome variable: Crime Rate

* Variable of interest: Tree Density

* Control variable: Population

e Hstimation:

* Significant (p-value < 0.01) and negative

e (Conclusion:

* Trees make our cities safer
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Correlation vs. Causation

e Is this effect a causal effect?

* Are trees the reason why crime is lower 1n cities?

e If it’s a causal effect

* Police should plant lots of trees to Albuquerque, New Mexico and crime rate
will plummet

* No, it’s a correlation between variables

* Selection bias
* People choose where to live
* Suppose high-income people tend to commit fewer crimes

* High income people also like living in neighbors with lots of trees
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Do trees make our cities sater? Well, maybe

* Can we conclude that trees do NOT make our cities safer?
* No
* Trees may, in fact, make our cities safer

* But, given this dataset, it is not possible to know whether they do

* How can we estimate causality?

T USED T THINK, THEN I TOOK A | | SOUNDS LKE THE
CORRELATION IHPUED STATISTICS CLASS. CLASS HELPED.
CAUSATION. Now I DON'T; WELL, MAYBE
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Fundamental problem of causal inference

e How to test whether trees make our cities safer?

* Plant 1 million trees in a city vs. Don’t plant any trees in a city
* Treatment vs. Control

* Compare the crime rates

 Unit level causal effect

* Difference in outcome, holding all other variables fixed

City | Crime Rate with Treatment | Crime Rate without Treatment | Causal Effect
A 0.16 °
B 0.04 °
C 0.01 P
TILBURG }iﬁi’ D 0.23 P




Fundamental problem of causal inference

* We can only observe one outcome

* Factual ... the value of | ... the value of
the outcome in | the outcome in
* We never observe counterfactual the Treatment | the Control
Group s ... Group'is ...

* What would have happened 1f

For members of

* Germany won WW?2 the Treatment e Missing
. Group ...
* What would have happened 1f
For members of Missi K
* Harry Potter and Draco Malfoy the Control Issing nown

became friends Group ...

* Causal inference is a missing data problem
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Ideal Experiment

e Parallel worlds

* World 1: Albuquerque

* Plant 1 million trees

* World 2: Albuquerque

* Do not plant any trees
p y

* Compare the worlds

..’-..
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How to approximate the ideal experiment?

e Mice and Dice
* Mice:
* Control group

* Treatment group

* Both control and treatment group

* Equal in expectation
* Dice:
* Random assignment into control and experiment group

* Exogenous variation
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Experiment: Do trees make our cities safer?

* Mice:

* Albuquerque, Dallas, Tilburg, Antwerp, New York, ...
* Dice:

* Randomly assign cities to the treatment group

* Treatment group: Dallas, Antwerp, New York, Baltimore

e Plant 1 million trees

* Control group: Tilburg, Albuquerque, LLondon, Hong Kong

* Don’t plant any trees
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Mice and Dice

e Medical researchers can do it in a lab

e Economists cannot do it in the real world

* Due to unethical reasons

* But, if there exists an exogenous source of
randomness

* Assigns people to control and treatment group

* We can establish causality
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Empirical Identification Strategies

Randomized Experiments

1.
2.
3.
4.
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Defined

Randomized Experiments & ===

Randomly Select
A Representative
Sample.
4 Y
Randomly Assign Participants Randomly Assign Participants
To Treatment Group. To Control Group.
¥ ¥
Implement Treatment, Withhold Treatment,
Keeping All Else Identical. Keeping All Else Identical.
4 k.
Measure Outcome, Estimate Measure Outcome, Estimate
Treatment Group Average. Control Group Average.

Estimate Average Treatment Effect
By Subtracting Treatment & Control
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Randomized Experiment: Example

* Research Question:

* What is the causal effect of scholarship on academic success?
* Mice:

*In 1997, a scholarship of $1,400 will be given to 1,300

children from low-income tamilies in New York City

* More than 10,000 applications
* Dice:

* Lottery determined who gets the tuition “voucher”

* Random assignment
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Randomized Experiment: Dataset

' The outcome variable:

* Academic success after the 3™ year of the experiment

* Variable of interest:

* Voucher receipt vs. no voucher

e Covariates:

* Academic success before the experiment
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Randomized Experiment: Dataset

s 1id voucher pre_ach post_ach
1 42 (5] 74 &3
2 194 e 7.5 4
3 218 1 2.5 3.5
4 261 1 & 26.5
5 384 1 11 2
6 323 1 8.5 15
7 339 1 5 23.5
a 348 1 37 52
9 349 1 71 68
16 386 (5] 24 13
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Randomized Experiments: Methods

* The better your research design, the simpler
your data analysis

1. Two-group t-test
2. Linear Regression

3. Linear Regression with covariates
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Two-group t-test

ttest post_ach, by(voucher)

Strategy #1: Two-Group t-Test

Number of Sample Mean Sample Standard Standard
Observations Deviation Error
VOUCHER =1 291 26.029 19.754 1.158
VOUCHER =0 230 21.130 18.172 1.198
Difference 4.899 1.683
[-statistic 2.911
df 519
p-value 0.004
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Linear Regression

reg post_ach voucher

Strategy #2: Linear Regression Analysis of POST_ACH on VOUCHER

Predictor Parameter  Parameter Standard t-Statistic  p-value
Estimate Error

INTERCEPT Bo 21.130 1.258 16.80 0.000

VOUCHER B, 4.899 1.683 2.911 0.004

R? Statistic 0.016

Residual Variance 19.072
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Linear Regression with Covariates

reg post_ach voucher pre_ach

Strategy #3: Linear Regression Analysis of POST_ACH on VOUCHLER, with PRE_ACH as

Covariale

Predictor Parameter  Parameter Standard (-Statistic ~ p-value
Estimate Error

INTERCEPT Bo 7.719 1.163 6.64 0.000

VOUCHER B, 4.098 1.269 3.23 0.001

PRE ACH 4 0.687 0.035 19.90 0.000

R? Statistic 0.442

Residual Variance 14.373
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Empirical Identification Strategies

Natural Experiments / Difference-in-Differences

B b=
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Natural Experiments

* Exogenous assignment
* Natural disaster
* Policy change

* Similar individuals exposed to ditferent treatments
* Individuals do not self-select into treatment

* Treatment and control group

*Fqual in expectation
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Natural Experiments: Example

* Research Question:

* What 1s the effect of minimum wage on employment?
* Mice:

* FFast food restaurants in New Jersey and Pennsylvania
* Dice:

* In April 1992, New Jersey increased the minimum wage from $4.25
to $5.05

* Treatment group

* Pennsylvania’s minimum wage stayed at $4.25
* Control group
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Natural Experiments: Variables

* The outcome variable:

* Employment in fast-food restaurants

* Variable of interest:
* Treatment effect in NJ
* New Jersey dummy variable * After policy change

e Covariates:

* Average wage, number of open hours
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Natural Experiments: Dataset

store_id vy ft emplo~t d nj time

25 13 85 1 o

26 13 5g 1 1

27 14 70.5 B 0

28 14 29 o 1

29 15 58 0 o

30 15 29 o 1

31 16 53 1 0

32 16 19 1 1

33 17 52.5 @ 0

34 17 a4 o 1

35 18 5@ 1 5

36 18 30 1 1

37 19 48.5 @ o

38 19 27 o 1

39 20 48 1 5

40 20 46.5 1 1

TILBURG ﬁ%ﬁ UNIVERSITY 41 21 46.5 1 o
. 42 21 23.75 1 1




Natural Experiments: Ditference-in-Ditferences

* Panel data
* Same individuals over multiple times

e Difference 1:

e Difference within individual

* After the treatment minus before
* NJ in Nov 92 - NJ in Feb 92
* PA in Nov 92 — PA in Feb 92
* Difference 2:

e Difference across individuals
* Difference in NJ — Difference in PA
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Natural Experiments: Countertfactual

* What would have happened in NJ 1f

*The minimum wage did not increase

* Assume NJ and PA are

* Equal in expectation

* Parallel trends assumption
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Difference-in-difference: Estimation

Yi: = P1 + [2Treat; + B3Post; + [4( Treat x Post);: + €

xtset store_1d time

xtreg y_ft_employment c.d_nj##c.time, fe cluster(store_id)

Stores by state

Difference,
PA NJ NJ —-PA
Variable (i) (i) (iii)
1. FTE employment before, 23.33 20.44 —2.89
all available observations (1.35) (0.51) (1.44)
2. FTE employment after, 21.17 21.03 -0.14
all available observations (0.94) (0.52) (1.07)
3. Change in mean FTE —2.16 0.59 2.76
employment (1.25) (0.54) (1.36)
* 4. Change in mean FTE —2.28 0.47 2.75
TILBURG }_%i@’ UNIVERSITY employment, balanced (1.25) (0.48) (1.34)

sample of stores®




Difference-in-differences: Robustness

e Parallel trends

* Before the treatment, the dependent variable must be

parallel

*Treatment and control group
* Matching on observables
* Similar individuals between treatment and control group

* Propensity score matching, IPTW, Coarsened exact
matching
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Empirical Identification Strategies

Regression Discontinuity
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Regression Discontinuity

* Units above some sharp (arbitrary) threshold
* Treatment group

* Units below the threshold
* Control group

* Treated units above but close to threshold

e Similar to control units below but close
* On observable and unobservable variables

* (Almost) “as good as random™ assignment to
treatment
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Potential Outcomes 1n Regression Discontinuity

4.00

3.50 7

Observed

3.00 A

E[Y(1)X]

Observed

Outcome variable (Y)
1o
|

A‘{!
1.00 4
0.50 |
g E[Y(0)X]
0.00 , . . ,
0 0.5 ] 1.5 > 25 5 X g5 4

Assignment variable (X)

TILBURG ‘%Qﬁi’ UNIVERSITY



Regression Discontinuity vs Randomized Experiment

A. Randomized Experiment

I ]
r I I
: - :
= I = I > I
Q 1 = I = :
[ S— [— I —
= : M ] = !
1 ] |
I ] |
0 ! 0 ! 0 :
0 0 x 0 x

B. Regression Discontinuity Design

17 1 -

0

0

E[DIX]
E[W|X]
E[UIX]

O o -

e’

0 % 0

e
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Regression Discontinuity: Example

* Research Question:

* What is the causal effect of minimum legal drinking age
(MLLDA) on mortality rates?

* Mice:
* Americans aged 20-22 between 1997 and 2003
* Death rates (deaths per 100,000 people per year)
* Dice:
* Age 21 = MLDA in the US
* Arbitrary threshold, could be 18 / 16 / 23
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Regression Discontinuity: Variables

' The outcome variable:

* Motor vehicle accidents per 100,000 habitants

* Variable of interest:

* Age over 21

e Covariates:

* Age
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Regression Discontinuity: Dataset
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28

21

22

23

24

25

26

27

28

29

36

31

32

mva

38.23812

368.12258

29.74465

30.71792

38.41714

36.31681

32.5758

33.82229

35.18687

32.3587

32.45526

agecell
28.63814
20.71233
208.79452
28.87671
28.9589
20.99999
21
21.8411
21.12329
21.28548
21.28767
21.36986

21.45285

over2l

= E E &

[

T



Regression Discontinuity: Countertactual

* People aged 21.1 are not so different than
* People aged 20.9
* Similar individuals exposed to ditferent treatments

* [ndividuals do not self-select into treatment

*'Treatment and control group

*Fqual in expectation
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Regression Discontinuity: Estimation

reg mva over2] agecell, robust

iy b | T MY
Dependent Ages 19-22 Ages 20-21
variable (1) (2} (3) (4]
Age Profiles for Death Rates in the United States All desithe = 66 9.55 9.75 9.61
(1.51) i1.83) (2.06) (2.29)
40 4 ; i it
Motor vehicle 4.53 4.66 4,76 5.89
accidents (.72) i(1.09) (1.08) i1.33)
35
a Suicide 1.79 1.81 1.72 1.30
5 5 7 73) |
S 3. (.30 (.78) (.73) (1.14)
g Homicide 10 20 16 — A5
£ 95 (.45) (.50] (.59) (.93]
2 TR R el e o Other external 84 1.80 1.41 1.63
= 20 o B 7 causes (.42) (.56]) (.59 {(.75)
= I iE Internal causes
. All internal 39 1.07 1.69 1.25
- 154 o i . causes (.54) (.80) i(.74) (1.01)
c 10 B R e x v Alcohol-related 44 .80 74 1.03
s A causes (.211) (.32) (.33) (.41)
a 5 Suicide
= Controls age age, age”, age age, age”,
interacted interacted
0 v . ' , . v . . with over-21 with over-21
19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0

Age Sample size 48 48 24 24




Regression Discontinuity: Robustness

* Careful check for covariate balance
* Below vs. above threshold
* Placebo tests:
* Placebo discontinuity at different thresholds

e Placebo outcomes:

* Regress on other covariates

* Bandwidth selection
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Empirical Identification Strategies

1.
2.
3.
4.

Instrumental Variables
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Instrumental Variables

* What 1s the causal etfect of education on
earnings?
* Can we estimate the effect with OLS regression?
* Selection bias

*Smart people can get more education

* Better exam scores, colleges admit smart people

*Smart people tend to earn more money

* They can easily learn the professional skills
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Instrumental Variables

e How to overcome the selection bias in observational
studies?

* 1) Find an exogenous treatment
* 2) Find an exogenous instrument

* What 1s an instrumental variable?
* Exogenously assigned

* Affects the outcome variable only through treatment
*No direct effect
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Instrumental Variables: Example

* Research Question:

* What 1s the causal etfect of education on earningsr?
* Mice:

* Americans born in 1930s-1940s

* Weekly earnings
* Dice:

* Instrument variable: Quarter of birth

*Born in December vs born in January
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Instrumental Variables: Variables

* The outcome variable:
* Weekly earnings

* Variable of interest:

e Hducation
e Instrument:

* Quarter of birth
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Instrumental Variables: Instrument

* Why quarter of birth?

* Children start kindergarten education in the year they turn 5

* Rick (born in Dec 1% 1930) and Morty (born in Jan 15 1930)

* Both start kindergarten in September 1935
* Rick (4 years and 9 months old) vs Morty (5 years and 8 months old)

* Compulsory schooling 1s until the age of 16

* Assume Rick & Morty drop school when they turn 16
* Rick has 12~ years of education

* Morty has 11~ years of education
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Instrumental Variables: Exogenously Assigned

13.2

13.0

12.8

12.6

Years of Completed Education

30 32 34 36 38 40
Year of Birth
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No Direct Effect

Instrumental Variables

50

45

|
35 40
Year of Birth

L

L

5.64
30

sbuiuing Apqeapm 607
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Instrumental Variables: Dataset

Inw 5 yob gob

1 5.798819%9 12 38 1

2 5.9524594 11 38 1

3 5.315949 12 38 1

4 5.595926 12 38 1

5 6.868915 12 38 1

5] 5.793871 11 38 1

7 6.389161 11 38 1

a8 6.847781 12 30 1

S 5.354861 11 30 1

1@ 5.259597 7 30 1

11 5.239484 1@ 30 1

12 5.874553 12 38 1

13 6.881272 14 38 1

14 5.588173 12 38 1

15 5.866414 16 38 1

16 5.729413 12 38 1

17 5.729413 16 38 1

_ 18 5.809437 2] 38 1
TILBURG }i@’ UNIVERSITY 19 6.657937 16 30 1




Instrumental Variables: Estimation

ivregress 2sls Inw (s = gq4), robust

Born 1n Born 1n
quarters 1-3  quarter 4  Difference

Log weekly wage 5.8983 5.9051 .0068
(.0027)

Years of education 12.7473 12.8394 0921
(.0132)

IV estimate of the 074
returns to schooling (.028)
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Instrumental Variables: Robustness

* First stage F-statistic:
* Must be higher than 10

*Strong instrument

* Finding a good instrument is difficult

TILBURG ‘%Qﬁi’ UNIVERSITY



Empirical Identification Strategies

Randomized Experiments
Natural Experiments / Difference-in-Differences

Regression Discontinuity

B b=

Instrumental Variables
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Sample Theses, Suggestions &
Data Sources
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Sample Thesis — M. Abdelkaui (Spring 2021)

e Panel data from Vinled
8,789 sellers * 4 months = 35,156 observations

* Impact ot exposing location on star ratings

e Difference-in-differences
e Treatment: Users hide their location

. Users expose their location
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Sample Thesis — T. v. d. Heuvel (Spring 2021)

Casa 02
e Panel data from R Rarible ou are welcome
* 11 months (May 20 — April 21)

@ The Digital Architect R Rarible

* 16,348 token sale observations
* Impact of resale royalty

@ Unlockable con

* on token sale price
* Accepted at the most prestigieus IS~ My Mango 4o
conferences 0w, andthenshow v o vy
*  WISE 2021 (Austin, TX)
* CIST 2021 (LLos Angeles, CA) Q o B) R

@ Unlockable con
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Sample Thesis — T. v. d. Heuvel (Spring 2021)

e [nstrumental variables estimation

* Instrument: Historical royalty behavior of creators

A token creator’s history of minting NFTs

DEOOEEOEE

Average of Resale Royalty » Resale Royalty
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Suggestions tfor Data-driven Thesis

* Time management
* ~4 months
* Start early
* Dataset
* Publicly available databases, APIs

* Ask your “ideal” advisor for help

* Math / code is easy
* Design / identification is difficult
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Thesis with me

* PhD in Management Science (Information Systems) - 2020
* Jindal School of Management, The University of Texas at Dallas

* Research interests
* Methods: Econometrics, Machine Learning, Game Theory

* Topics: FinTech, Platform Strategy, Sharing Economy, Online
Marketplaces

* If you want to write a data-driven thesis with me
* Send me an e-mail as early as possible
* m.m.tunc@tilburguniversity.edu
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Where to find datasets?

* Kaggle: https://www.kaggle.com/datasets

* Awesome Public Datasets:
* https://github.com/awesomedata/awesome-public-datasets

* Google Cloud Datasets:

* https://console.cloud.google.com/marketplace/browserfilter=solution-type:dataset

* EU Open Data: https://data.curopa.cu/en

* Google Research Datasets: https://research.google/tools/dataset/

* Some others:
* https://public.opendatasoft.com/

https://flowingdata.com/

https://data.mendeley.com/

https://academictorrents.com/browse.php?cat=06

https://knoema.com/atlas/sources
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https://www.kaggle.com/datasets
https://github.com/awesomedata/awesome-public-datasets
https://console.cloud.google.com/marketplace/browse?filter=solution-type:dataset
https://data.europa.eu/en
https://research.google/tools/dataset/
https://public.opendatasoft.com/
https://flowingdata.com/
https://data.mendeley.com/
https://academictorrents.com/browse.php?cat=6
https://knoema.com/atlas/sources

Sample Theses & Data Sources on Canvas

* Sample Thesis by M. Abdelkaui

* Sample Thesis by T. v. d. Heuvel

* Data Sources: Economics of Digitization
*Click HERFE
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https://tilburguniversity.instructure.com/courses/4629/files/1506495
https://tilburguniversity.instructure.com/courses/4629/files/1506494
https://tilburguniversity.instructure.com/courses/4629/files/1128712

Q& A

* Who has any comments, inputs, or questions?

WRIMNG YOUR THESIS:

ACTUALLY WRITING

YOUR THESIS
THINKING
ABOUT WRITING FDDLING WITH LaTeX/Word
g
YOUR THESIS TRYING TO &eET °
INSIGNIFICANT FORMATTING

DETAILS TO LOOK NICE

TILBURG

JORGE CHAM © 2015 WWW.PHDCOMICS.COM
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