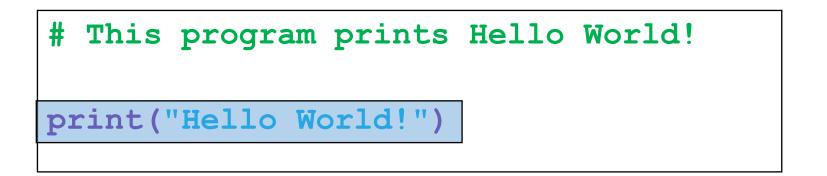
Chapter 2: Elementary Programming

Instructor: Dr. Murat Tunc

Lecture 2

Last Week (Summary)

"Hello World!" Program


This program prints Hello World!

print("Hello World!")

- A statement represents an action or a sequence of actions
- The statement **print("Hello World!")** in the program is a statement to display the greeting "Hello World!"

- Line 1 (in green color) is a comment that documents what the program is and how it is constructed
- They are not programming statements, and thus are **ignored** by the compiler

This program prints Hello World!

print("Hello World!")

Special Symbols

- () i.e. Opening and closing parentheses
 - Used with functions and methods
- # i.e. Pound sign
 - Precedes a comment line
- " " i.e. Opening and closing double quotation marks
 - Enclosing a string (i.e. a series of characters)

```
# This program prints Hello World!
print("Hello World!")
```


Programming Errors

- 1) Syntax Errors
 - **Detected** by the compiler
- 2) Logic Errors
 - Produce incorrect results

Programming Errors

Syntax Error

This program prints Hello World!

```
print("Hello World!)
```

11

Programming Errors

Logic Error

This program prints the average of 3 + 4
print("Average of 3 and 4 is ")
print(3 + 4 / 2)

Output: Average of 3 and 4 is 5 Correct output: 3.5Correct way: (3+4)/2 = 3.5

Chapter 2: Elementary Programming

Instructor: Dr. Murat Tunc

Lecture 2

In-class Exercise 1 (Group study – 10 min)

Write a program that

- 1) reads in an input as the radius of a circle from the user, and
- 2) calculates and prints the area of a circle

Writing a Simple Program

- **Designing Algorithm:** how a problem is solved by listing the actions that need to be taken
 - Description can be in natural language or in pseudocode
- Algorithm to calculate area of a circle:
 - Step 1: Read in the circle's radius from the user
 - Step 2: Compute area using the formula:

area = π * radius * radius

• Step 3: Display the result

Writing a Simple Program

• Translating the algorithm into a program

Step 1: Read in radius from the user

Step 2: Compute area

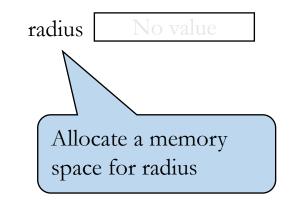
Step 3: Display the area

Writing a Simple Program

Step 1: Read in radius from the user
radius = input("Please input the radius of a circle and
press Enter: ")

radius = float(radius)

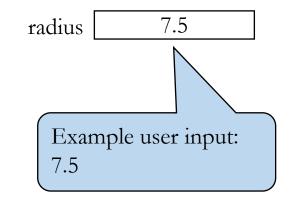
Step 2: Compute area area = radius * radius * 3.14159


Step 3: Display the area

Step 1: Read in radius from the user
 radius = input("Please input the radius of a circle
and press Enter: ")

radius = float(radius)

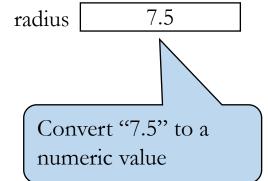
Step 2: Compute area
area = radius * radius * 3.14159



Step 3: Display the area

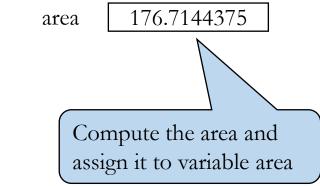
Step 1: Read in radius from the user
radius = input("Please input the radius of a circle
and press Enter: ")

radius = float(radius)


Step 2: Compute area
area = radius * radius * 3.14159

Step 3: Display the area

Step 2: Compute area
area = radius * radius * 3.14159



Step 3: Display the area

Step 1: Read in radius from the user radius = input("Please input the radius of a circle and press Enter: ")

radius = float(radius)

Step 2: Compute area
area = radius * radius * 3.14159

radius

7.5

Step 3: Display the area

area 176.7144375 # Step 2: Compute area area = radius * radius * 3.14159 Display the area # Step 3: Display the area print("The area of a circle with the radius", radius, is", area)

In-class Exercise 2 (Self study - 10 minutes)

Write a program that

- 1) reads in a Celsius degree from the user,
- 2) converts Celsius to Fahrenheit degree, and
- 3) displays the result

Hint. Fahrenheit = (9 / 5) *Celsius + 32

In-class Exercise 2 - Answer

Step 1: Read in Celsius degree from the user celsius = input("Please input the Celsius degree and press Enter: ")

celsius = **float**(celsius)

Step 2: Convert Celsius to Fahrenheit degree
fahrenheit = (9 / 5) * celsius + 32

Step 3: Display the result
 print("Celsius degree of", celsius, "is equal to",
fahrenheit, "Fahrenheit degree")

Review

- Q: input() statement reads in a value from the user as numeric.
 - A. True
 - B. False
- Ans: B

• Q: What does the following program print?

```
radius = 7.5
print("radius")
```

- A. 7.5B. radius
- Ans: B

• Q: What does the following program print?

radius = 7.5
print(radius)

- A. 7.5B. radius
- Ans: A

In-class Exercise 3 (Practice at home – 10 min)

Write a program that

- 1) reads three numbers from the user and
- 2) displays their average

Identifiers

- Identifiers are the names that identify the elements such as variables, constants, methods, classes, and packages in a program
- An identifier is a sequence of characters that **consist of letters, digits**, and **underscores** (_).
- An identifier must start with a letter, an underscore (_). It cannot start with a digit

Identifiers

- An identifier cannot be a reserved keyword
 - import, return, except, if, else, ...
- An identifier **cannot** be **True** or **False**
- An identifier can be of any length
- Python is case sensitive
 - Area, area, and AREA are all **different** identifiers

Variables

- The program needs to read the radius entered by the user from the keyboard. This raises two important issues:
 - Reading the radius
 - Storing the radius in the program

• In order to store the radius, the program needs to declare a symbol called a variable

- Variables are used to **store values** to be used later in a program
- They are called variables because their values can be changed
- We need to tell the compiler the name of the variable
- Choose descriptive names for variables
 - radius for radius
 - area for area

Assignment Statements

- We can assign a value to a variable by using an **assignment statement**
- In Python, the equal sign (=) is used as the assignment operator
- The syntax for assignment statements is as follows:

variable = expression

• An expression represents a computation involving values, variables, and operators that taking them together, evaluates to a value

Assignment Statements

- x = 1 # Assign 1 to x
- radius = 7.5 **# Assign 7.5 to radius**
- a = **"A" #** Assign **"A"** to a

- count = 2count = count + 1
- # Assign value 2 to count# Assign addition of count# and 1 to count

Assignment Statements

• To assign a value to a variable, you must place the variable name to the left of the assignment operator

$$radius = 5 \qquad \longleftarrow \qquad Correct$$

Review

- Q: Which of the following are valid identifiers?
 - А. а
 - B. +app
 - C. 3number
 - D. radiusOfTheCircle
 - E. \$2
 - F. d+7
 - G. True
- Ans: A, D

Numeric Literals

- A literal is a constant value that appears directly in a program
- For **example**, 34 and 0.305 are literals in the following statements

numberOfYears = 34

weight = 0.305

Numeric Literals

- An **integer** literal can be assigned to a variable
 - integerVariable = 3
 - print (type (integerVariable)) # Displays <class 'int'>
- A **floating point** literal written with a decimal point
 - floatVariable = 3.14
 - print (type (floatVariable)) # Displays <class 'float'>

Numeric Literals - Conversion

- We can convert a floating point literal to an integer literal
 - Removes the decimal parts of a float number
- Example:

```
numberBeforeConvertion = 3.14
numberAfterConvertion = int( numberBeforeConvertion )
print ( type ( numberAfterConvertion ) )
    # Displays <class 'int'>
print ( numberAfterConvertion )
    # Displays 3
```


Numeric Literals - Conversion

- Similarly, we can convert an integer literal to a float number
 - Simply adds a decimal point and a zero
- Example:

```
numberBeforeConvertion = 3
numberAfterConvertion = float( numberBeforeConvertion )
print ( type ( numberAfterConvertion ) )
    # Displays <class 'float'>
print ( numberAfterConvertion )
    # Displays 3.0
```


Numeric Operations

Name	Meaning	Example	Result
+	Addition	34 + 1	35
_	Subtraction	34.0 - 0.1	33.9
*	Multiplication	300 * 30	9000
/	Division	1.0 / 2.0	0.5
010	Remainder	20 % 3	2

- Division operator: /
 - will always result in a floating point number
 - Example: 5 / 2 yields a floating point number 2.5
- Integer division operator: //
 - Example: 5 // 2 yields an integer number 2
- Remainder operator: %
 - will result in the **remainder** of the division
 - Example: 5 % 2 yields an integer number 1
- Remainder operation is useful in programming
 - Even number % 2 is always 0
 - Odd number % 2 is always 1

- The **result of a division** operation is **always** a floating point number
 - 4 / 2 **# Results in 2.0**
- The result of an **integer division** and **remainder** operation
 - **Depends** on the types of the numeric literals used in the operations

- If at least one floating point number is used in integer division and remainder operations
 - The result will be a floating point number
- Examples:
 - 7 // 3.0 **# Results in 2.0**
 - 7.0 % 3
- # Results in 1.0

- If **two integer numbers** are used in integer division and remainder operations
 - The result will be an integer number
- Examples:
 - 7 // 3 **# Results in 2**
 - 7 % 3 **# Results in 1**

In-class Exercise 4 (Self-study – 10 min)

Write a program to **obtain minutes** and **remaining seconds** from an amount of **time in seconds**.

1) **Read in the time in seconds** from the user (**Example**: 200 seconds)

2) **Convert** 200 seconds => 3 minutes and 20 seconds

Step 1: Read in the time in seconds from the user timeInSeconds = float(input("Please input the time (in seconds) and press Enter: "))

Step 2: Convert the time to minutes and seconds
minutes = int (timeInSeconds // 60)
seconds = timeInSeconds % 60

Step 3: Display the result

print(timeInSeconds, "seconds is equal to", minutes, "minutes and", seconds, "seconds")

Review

- count = 7 / 3 # What is the value stored in count?
 A. 1
 - B. 2
 - C. 2.3333
- **Ans:** 2.3333
- test = 7 % 3 # What is the value stored in test?
 A. 1
 B. 2
 C. 2.3333
- **Ans:** 1

- count = 7 // 3 # What is the value stored in count?
 A. 1
 - B. 2
 - C. 2.3333
- **Ans:** 2
- test = 7.5 // 3 # What is the value stored in test?
 A. 2.5
 B. 2
 - C. 2.0
- **Ans:** 2.0

Exponent Operations

• **pow** (a, b) is used to compute a^b

print(pow(2, 3))**# Displays 8** print(pow(4, 0.5)) **#** Displays 2.0 print(pow(2.5, 2)) **# Displays 6.25** print(pow(2.5, -2))**# Displays 0.16**

Arithmetic Expressions

$$\frac{3+4x}{5} - \frac{10(y-5)(a+b+c)}{x} + 9(\frac{4}{x} + \frac{9+x}{y})$$


is translated to

$$(3+4*x)/5 - 10*(y-5)*(a+b+c)/x + 9*(4/x + (9+x)/y)$$

How to Evaluate an Expression

• We can safely apply the arithmetic rule for evaluating a Python expression

Augmented Assignment Operators

• The operators +, -, *, /, and % can be combined with the assignment operator (=) to form **augmented operators**

Operator	Name	Example	Equivalent
+=	Addition assignment	i += 8	i = i + 8
-=	Subtraction assignment	i -= 8	i = i - 8
*=	Multiplication assignment	i *= 8	i = i * 8
/=	Division assignment	i /= 8	i = i / 8
%=	Remainder assignment	i %= 8	i = i % 8

Review

• x = 5 $x \neq 2$

What is the value stored in x?

- A. 2
- B. 3
- C. 2.5
- D. Error
- Ans: C

• test = 5

test += test + 1

What is the value in test?

- A. 6
- B. 5
- C. 11
- D. Error
- Ans: C

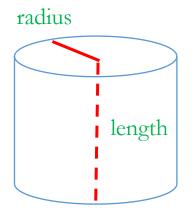
• x = 5

What is the value stored in x?

- A. 2
- B. 3
- C. 2.5
- D. Error

x / = 2

• **Ans:** A


Practice Question 1

Write a program that

- 1) reads a two digit integer from the user and
- 2) swap its digits to create a new integer.

For example, if an integer is 93, after swapping it becomes 39.

Practice Question 2

Write a program that

- 1) reads numbers for radius and length from the user and
- 2) displays the volume of a cylinder on console.
- area = radius * radius * π
- volume = area * length

Practice Question 3

Write a program that

- 1) reads the values of x and y from the user and
- 2) display the following result on console.

$$y^{x-7} + \frac{x+y}{4} - \frac{2(x-y)+3}{5} + \frac{y}{3x-10}$$

Check the result for x=10, y=5 (The answer should be 126.4)

