Chapter 2: Elementary Programming

Instructor: Dr. Murat Tunc

Lecture 2

Last Week (Summary)

"Hello World!" Program

\# This program prints Hello World!
print("Hello World!")

Statement

- A statement represents an action or a sequence of actions
- The statement print("Hello World!") in the program is a statement to display the greeting "Hello World!"
\# This program prints Hello World!
print("Hello World!")

Comments

- Line 1 (in green color) is a comment that documents what the program is and how it is constructed
- They are not programming statements, and thus are ignored by the compiler

\# This program prints Hello World!

print("Hello World!")

Special Symbols

- () i.e. Opening and closing parentheses
- Used with functions and methods
- \# i.e. Pound sign
- Precedes a comment line
- " " i.e. Opening and closing double quotation marks
- Enclosing a string (i.e. a series of characters)

```
# This program prints Hello World!
print("Hello World!")
```


Programming Errors

- 1) Syntax Errors
- Detected by the compiler
-2) Logic Errors
- Produce incorrect results

Programming Errors

Syntax Error

\# This program prints Hello World! print("Hello Worldy)

Programming Errors

Logic Error

\# This program prints the average of $3+4$
print("Average of 3 and 4 is ")
print(3 + 4 / 2)

Output: Average of 3 and 4 is 5
Correct output: 3.5
Correct way: $(3+4) / 2=3.5$

Chapter 2: Elementary Programming

Instructor: Dr. Murat Tunc

Lecture 2

In-class Exercise 1 (Group study - 10 min)

Write a program that

1) reads in an input as the radius of a circle from the user, and
2) calculates and prints the area of a circle

Writing a Simple Program

- Designing Algorithm: how a problem is solved by listing the actions that need to be taken
- Description can be in natural language or in pseudocode
- Algorithm to calculate area of a circle:
- Step 1: Read in the circle's radius from the user
- Step 2: Compute area using the formula:

$$
\text { area }=\pi * \text { radius } * \text { radius }
$$

- Step 3: Display the result
- Translating the algorithm into a program
\# Step 1: Read in radius from the user
\# Step 2: Compute area
\# Step 3: Display the area

Writing a Simple Program

\# Step 1: Read in radius from the user
radius $=$ input("Please input the radius of a circle and press Enter: ")
radius $=$ float(radius)
\# Step 2: Compute area
area $=$ radius $*$ radius * 3.14159
\# Step 3: Display the area

Tracing a Program Execution

\# Step 1: Read in radius from the user
radius $=$ input(" "Please input the radius of a circle and press Enter: ")
radius $=$ float(radius)
\# Step 2: Compute area area $=$ radius $*$ radius $* 3.14159$

\# Step 3: Display the area print("The area of a circle with the radius", radius, "is", area)

Tracing a Program Execution

\# Step 1: Read in radius from the user
radius $=$ input ('Please input the radius of a circle and press Enter: ")
radius $=$ float(radius)
\# Step 2: Compute area
area $=$ radius * radius * 3.14159

\# Step 3: Display the area print("The area of a circle with the radius", radius, "is", area)

Tracing a Program Execution

\# Step 1: Read in radius from the user
radius $=$ input("Please input the radius of a circle and press Enter: ")
radius $=$ float(radius)
\# Step 2: Compute area
area $=$ radius $*$ radius $* 3.14159$

\# Step 3: Display the area print("The area of a circle with the radius", radius, "is", area)

Tracing a Program Execution

\# Step 1: Read in radius from the user
radius $=$ input("Please input the radius of a circle and press Enter: ")
radius $=$ float(radius)
\# Step 2: Compute area
area $=$ radius $*$ radius * 3.14159

\# Step 3: Display the area print("The area of a circle with the radius", radius, "is", area)

Tracing a Program Execution

\# Step 1: Read in radius from the user
radius $=$ input("Please input the radius of a circle and press Enter: ")
radius $=$ float(radius)

	7.5
area	176.7144375

\# Step 2: Compute area
area $=$ radius * radius * 3.14159
Display the area
\# Step 3: Dispyy the area

In-class Exercise 2 (Self study - 10 minutes)

Write a program that

1) reads in a Celsius degree from the user,
2) converts Celsius to Fahrenheit degree, and
3) displays the result

Hint. Fahrenheit $=(9 / 5) *$ Celsius +32

In-class Exercise 2 - Answer

\# Step 1: Read in Celsius degree from the user celsius $=$ input("Please input the Celsius degree and press Enter: ")
celsius $=$ float(celsius)
\# Step 2: Convert Celsius to Fahrenheit degree fahrenheit $=(9 / 5) *$ celsius +32
\# Step 3: Display the result print("Celsius degree of", celsius, "is equal to", fahrenheit, "Fahrenheit degree")

Review

- Q: input() statement reads in a value from the user as numeric.
A. True
B. False
- Ans: B
- Q: What does the following program print? radius $=7.5$ print("radius")
A. 7.5
B. radius
- Ans: B
- Q: What does the following program print?
radius $=7.5$
print(radius)
A. 7.5
B. radius
- Ans: A

In-class Exercise 3
 (Practice at home - 10 min)

Write a program that

1) reads three numbers from the user and
2) displays their average

Identifiers

- Identifiers are the names that identify the elements such as variables, constants, methods, classes, and packages in a program
- An identifier is a sequence of characters that consist of letters, digits, and underscores (_).
- An identifier must start with a letter, an underscore (_). It cannot start with a digit

Identifiers

- An identifier cannot be a reserved keyword
- import, return, except, if, else, ...
- An identifier cannot be True or False
- An identifier can be of any length
- Python is case sensitive
- Area, area, and AREA are all different identifiers

Variables

- The program needs to read the radius entered by the user from the keyboard. This raises two important issues:
- Reading the radius
- Storing the radius in the program
- In order to store the radius, the program needs to declare a symbol called a variable

Variables

- Variables are used to store values to be used later in a program
- They are called variables because their values can be changed
- We need to tell the compiler the name of the variable
- Choose descriptive names for variables
- radius for radius
- area for area

Assignment Statements

- We can assign a value to a variable by using an assignment statement
- In Python, the equal sign ($=$) is used as the assignment operator
- The syntax for assignment statements is as follows:

```
variable = expression
```

- An expression represents a computation involving values, variables, and operators that taking them together, evaluates to a value

Assignment Statements

- $\mathrm{x}=1$
- radius $=7.5$
- $\mathrm{a}=$ "A"
- count $=2$
count $=$ count +1
\# Assign 1 to x
\# Assign 7.5 to radius
\# Assign "A" to a
\# Assign value 2 to count
\# Assign addition of count \# and 1 to count

Assignment Statements

- To assign a value to a variable, you must place the variable name to the left of the assignment operator

$$
\begin{array}{|r|r|}
\hline \text { radius }=5 & \text { Correct } \\
\hline
\end{array}
$$

$$
5=\text { radius } \quad \text { Incorrect!!! }
$$

Review

- Q: Which of the following are valid identifiers?
A. a
B. + app
C. 3number
D. radiusOfTheCircle
E. $\$ 2$
F. $\mathrm{d}+7$
G. True
- Ans: A, D

Numeric Literals

- A literal is a constant value that appears directly in a program
- For example, 34 and 0.305 are literals in the following statements numberOfYears $=34$ weight $=0.305$

Numeric Literals

- An integer literal can be assigned to a variable
- integerVariable $=3$
- print (type (integerVariable)) \# Displays <class 'int'>
- A floating point literal written with a decimal point
- floatVariable $=3.14$
- print (type (floatVariable)) \# Displays <class 'float'>

Numeric Literals - Conversion

- We can convert a floating point literal to an integer literal
- Removes the decimal parts of a float number
- Example:

```
numberBeforeConvertion = 3.14
numberAfterConvertion = int( numberBeforeConvertion )
print ( type ( numberAfterConvertion ) )
    # Displays <class 'int'>
print ( numberAfterConvertion)
    # Displays 3
```


Numeric Literals - Conversion

- Similarly, we can convert an integer literal to a float number
- Simply adds a decimal point and a zero
- Example:

```
numberBeforeConvertion = 3
numberAfterConvertion = float( numberBeforeConvertion )
print ( type ( numberAfterConvertion ) )
    # Displays <class 'float'>
print ( numberAfterConvertion )
    # Displays 3.0
```


Numeric Operations

Name	Meaning	Example	Resul
+	Addition	$34+1$	35
-	Subtraction	$34.0-0.1$	33.9
*	Multiplication	$300 * 30$	9000
/	Division	$1.0 / 2.0$	0.5
$\%$	Remainder	$20 \% 3$	2

Division, Integer Division and Remainder

- Division operator: /
- will always result in a floating point number
- Example: 5 / 2 yields a floating point number 2.5
- Integer division operator: //
- Example: 5 // 2 yields an integer number 2
- Remainder operator: \%
- will result in the remainder of the division
- Example: $5 \% 2$ yields an integer number 1
- Remainder operation is useful in programming
- Even number $\% 2$ is always 0
- Odd number $\% 2$ is always 1

Division, Integer Division and Remainder

- The result of a division operation is always a floating point number
- 4 / 2 \# Results in 2.0
- The result of an integer division and remainder operation
- Depends on the types of the numeric literals used in the operations

Division, Integer Division and Remainder

- If at least one floating point number is used in integer division and remainder operations
- The result will be a floating point number
- Examples:
- 7 // 3.0
- 7.0 \% 3
\# Results in 2.0
\# Results in 1.0

Division, Integer Division and Remainder

- If two integer numbers are used in integer division and remainder operations
- The result will be an integer number
- Examples:
- 7 // 3 \# Results in 2
- 7 \% 3 \# Results in 1

In-class Exercise 4 (Self-study - 10 min)

Write a program to obtain minutes and remaining seconds from an amount of time in seconds.

1) Read in the time in seconds from the user (Example: 200 seconds)
2) Convert 200 seconds $=>3$ minutes and 20 seconds

In-class Exercise 4 - Answer

\# Step 1: Read in the time in seconds from the user timeInSeconds $=$ float(input("Please input the time (in seconds) and press Enter: "))
\# Step 2: Convert the time to minutes and seconds minutes $=\operatorname{int}($ timeInSeconds $/ / 60)$
seconds $=$ timeInSeconds $\% 60$
\# Step 3: Display the result
print(timeInSeconds, "seconds is equal to", minutes, "minutes and", seconds, "seconds")

Review

- count $=7 / 3$ \# What is the value stored in count?
A. 1
B. 2
C. 2.3333
- Ans: 2.3333
- test $=7 \% 3$ \# What is the value stored in test?
A. 1
B. 2
C. 2.3333
- Ans: 1
- count $=7 / / 3$ \# What is the value stored in count?
A. 1
B. 2
C. 2.3333
- Ans: 2
- test $=7.5 / / 3$ \# What is the value stored in test?
A. 2.5
B. 2
C. 2.0
- Ans: 2.0

Exponent Operations

- pow (a, b) is used to compute a^{b}
print(pow(2, 3))
\# Displays 8
print(pow(4, 0.5))
\# Displays 2.0
print(pow(2.5, 2))
\# Displays 6.25
print(pow(2.5, -2))
\# Displays 0.16

Arithmetic Expressions

$$
\frac{3+4 x}{5}-\frac{10(y-5)(a+b+c)}{x}+9\left(\frac{4}{x}+\frac{9+x}{y}\right)
$$

is translated to
$\left(3+4^{*} \mathrm{x}\right) / 5-10^{*}(\mathrm{y}-5)^{*}(\mathrm{a}+\mathrm{b}+\mathrm{c}) / \mathrm{x}+9 *(4 / \mathrm{x}+(9+\mathrm{x}) / \mathrm{y})$

How to Evaluate an Expression

- We can safely apply the arithmetic rule for evaluating a Python expression

Augmented Assignment Operators

- The operators,,+- , $/$, and $\%$ can be combined with the assignment operator ($=$) to form augmented operators

Operator	Name	Example	Equivalent
$+=$	Addition assignment	$\mathrm{i}+=8$	$\mathrm{i}=\mathrm{i}+8$
$-=$	Subtraction assignment	$\mathrm{i}-=8$	$\mathrm{i}=\mathrm{i}-8$
$\%=$	Multiplication assignment	$\mathrm{i} *=8$	$\mathrm{i}=\mathrm{i} * 8$
$/=$	Division assignment	$\mathrm{i} /=8$	$\mathrm{i}=\mathrm{i} / 8$
$\%=$	Remainder assignment	$\mathrm{i} \%=8$	$\mathrm{i}=\mathrm{i} \% 8$

Review

- $\quad \mathrm{x}=5$
$\mathrm{x} /=2$
\# What is the value stored in x ?
A. 2
B. 3
C. 2.5
D. Error
- Ans: C
- \quad test $=5$
test $+=$ test $+1 \quad$ \# What is the value in test?
A. 6
B. 5
C. 11
D. Error
- Ans: C
- $\quad \mathrm{x}=5$
$x / /=2$
\# What is the value stored in x ?
A. 2
B. 3
C. 2.5
D. Error
- Ans: A

Practice Question 1

Write a program that

1) reads a two digit integer from the user and
2) swap its digits to create a new integer.

For example, if an integer is 93, after swapping it becomes 39 .

Practice Question 2

Write a program that

1) reads numbers for radius and length from the user and
2) displays the volume of a cylinder on console.
area $=$ radius $*$ radius $* \pi$
volume $=$ area $*$ length

Practice Question 3

Write a program that

1) reads the values of x and y from the user and
2) display the following result on console.

$$
y^{x-7}+\frac{x+y}{4}-\frac{2(x-y)+3}{5}+\frac{y}{3 x-10}
$$

Check the result for $\mathrm{x}=10, \mathrm{y}=5$ (The answer should be 126.4)

