
Chapter 2: Elementary
Programming

Instructor: Dr. Murat Tunc

Lecture 2

Last Week
(Summary)

“Hello World!” Program

This program prints Hello World!

print("Hello World!")

Statement

• A statement represents an action or a sequence of
actions

• The statement print(“Hello World!”) in the program is a
statement to display the greeting “Hello World!”

This program prints Hello World!

print("Hello World!")

Comments

• Line 1 (in green color) is a comment that documents
what the program is and how it is constructed

• They are not programming statements, and thus are
ignored by the compiler

This program prints Hello World!

print("Hello World!")

Special Symbols

• () i.e. Opening and closing parentheses
• Used with functions and methods

• # i.e. Pound sign
• Precedes a comment line

• “ ” i.e. Opening and closing double quotation marks
• Enclosing a string (i.e. a series of characters)

This program prints Hello World!

print("Hello World!")

Programming Errors

• 1) Syntax Errors
• Detected by the compiler

• 2) Logic Errors
• Produce incorrect results

Programming Errors

Syntax Error

This program prints Hello World!

print("Hello World!)

"

Programming Errors

Logic Error

This program prints the average of 3 + 4

print("Average of 3 and 4 is ")

print(3 + 4 / 2)

Output: Average of 3 and 4 is 5
Correct output: 3.5
Correct way: (3+4)/2 = 3.5

Chapter 2: Elementary
Programming

Instructor: Dr. Murat Tunc

Lecture 2

In-class Exercise 1
(Group study – 10 min)

Write a program that
1) reads in an input as the radius of a circle from the user, and
2) calculates and prints the area of a circle

Writing a Simple Program

• Designing Algorithm: how a problem is solved by
listing the actions that need to be taken

• Description can be in natural language or in pseudocode

• Algorithm to calculate area of a circle:
• Step 1: Read in the circle’s radius from the user
• Step 2: Compute area using the formula:

area = π * radius * radius

• Step 3: Display the result

Writing a Simple Program

• Translating the algorithm into a program

Step 1: Read in radius from the user

Step 2: Compute area

Step 3: Display the area

Writing a Simple Program

Step 1: Read in radius from the user
radius = input("Please input the radius of a circle and

press Enter: ")
radius = float(radius)

Step 2: Compute area
area = radius * radius * 3.14159

Step 3: Display the area
print("The area of a circle with the radius", radius,

"is", area)

Tracing a Program Execution

Step 1: Read in radius from the user
radius = input("Please input the radius of a circle

and press Enter: ")
radius = float(radius)

Step 2: Compute area
area = radius * radius * 3.14159

Step 3: Display the area
print("The area of a circle with the radius", radius,

"is", area)

No valueradius

Allocate a memory
space for radius

Tracing a Program Execution

Step 1: Read in radius from the user
radius = input("Please input the radius of a circle

and press Enter: ")
radius = float(radius)

Step 2: Compute area
area = radius * radius * 3.14159

Step 3: Display the area
print("The area of a circle with the radius", radius,

"is", area)

7.5radius

Example user input:
7.5

Tracing a Program Execution

Step 1: Read in radius from the user
radius = input("Please input the radius of a circle

and press Enter: ")
radius = float(radius)

Step 2: Compute area
area = radius * radius * 3.14159

Step 3: Display the area
print("The area of a circle with the radius", radius,

"is", area)

7.5radius

Convert “7.5” to a
numeric value

Tracing a Program Execution

Step 1: Read in radius from the user
radius = input("Please input the radius of a circle

and press Enter: ")
radius = float(radius)

Step 2: Compute area
area = radius * radius * 3.14159

Step 3: Display the area
print("The area of a circle with the radius", radius,

"is", area)

7.5radius

Compute the area and
assign it to variable area

area 176.7144375

Tracing a Program Execution

Step 1: Read in radius from the user
radius = input("Please input the radius of a circle

and press Enter: ")
radius = float(radius)

Step 2: Compute area
area = radius * radius * 3.14159

Step 3: Display the area
print("The area of a circle with the radius", radius,

"is", area)

7.5radius

Display the area

area 176.7144375

In-class Exercise 2
(Self study - 10 minutes)

Write a program that
1) reads in a Celsius degree from the user,
2) converts Celsius to Fahrenheit degree, and
3) displays the result

Hint. Fahrenheit = (9 / 5) * Celsius + 32

In-class Exercise 2 - Answer

Step 1: Read in Celsius degree from the user
celsius = input("Please input the Celsius degree and

press Enter: ")
celsius = float(celsius)

Step 2: Convert Celsius to Fahrenheit degree
fahrenheit = (9 / 5) * celsius + 32

Step 3: Display the result
print("Celsius degree of", celsius, "is equal to",

fahrenheit, "Fahrenheit degree")

Review

• Q: input() statement reads in a value from the user as
numeric.

A. True
B. False

• Ans: B

• Q: What does the following program print?

radius = 7.5
print(“radius”)

A. 7.5
B. radius

• Ans: B

• Q: What does the following program print?

radius = 7.5
print(radius)

A. 7.5
B. radius

• Ans: A

In-class Exercise 3
(Practice at home – 10 min)

Write a program that
1) reads three numbers from the user and
2) displays their average

Identifiers

• Identifiers are the names that identify the elements such
as variables, constants, methods, classes, and packages in
a program

• An identifier is a sequence of characters that consist of
letters, digits, and underscores (_).

• An identifier must start with a letter, an underscore (_). It
cannot start with a digit

Identifiers

• An identifier cannot be a reserved keyword
• import, return, except, if, else, …

• An identifier cannot be True or False

• An identifier can be of any length

• Python is case sensitive
• Area, area, and AREA are all different identifiers

Variables

• The program needs to read the radius entered by the user
from the keyboard. This raises two important issues:

• Reading the radius
• Storing the radius in the program

• In order to store the radius, the program needs to declare
a symbol called a variable

Variables

• Variables are used to store values to be used later in a
program

• They are called variables because their values can be
changed

• We need to tell the compiler the name of the variable

• Choose descriptive names for variables
• radius for radius
• area for area

Assignment Statements

• We can assign a value to a variable by using an
assignment statement

• In Python, the equal sign (=) is used as the assignment
operator

• The syntax for assignment statements is as follows:

• An expression represents a computation involving values,
variables, and operators that taking them together,
evaluates to a value

variable = expression

Assignment Statements

• x = 1 # Assign 1 to x

• radius = 7.5 # Assign 7.5 to radius

• a = “A” # Assign “A” to a

• count = 2 # Assign value 2 to count
count = count + 1 # Assign addition of count

and 1 to count

Assignment Statements

• To assign a value to a variable, you must place the
variable name to the left of the assignment operator

5 = radius Incorrect!!!

radius = 5 Correct

Review

• Q: Which of the following are valid identifiers?
A. a
B. +app
C. 3number
D. radiusOfTheCircle
E. $2
F. d+7
G. True

• Ans: A, D

Numeric Literals

• A literal is a constant value that appears directly in a
program

• For example, 34 and 0.305 are literals in the following
statements
numberOfYears = 34
weight = 0.305

Numeric Literals

• An integer literal can be assigned to a variable
• integerVariable = 3
• print (type (integerVariable)) # Displays <class 'int'>

• A floating point literal written with a decimal point
• floatVariable = 3.14
• print (type (floatVariable)) # Displays <class 'float'>

Numeric Literals - Conversion

• We can convert a floating point literal to an integer literal
• Removes the decimal parts of a float number

• Example:
numberBeforeConvertion = 3.14
numberAfterConvertion = int(numberBeforeConvertion)
print (type (numberAfterConvertion))

Displays <class 'int'>
print (numberAfterConvertion)

Displays 3

Numeric Literals - Conversion

• Similarly, we can convert an integer literal to a float number
• Simply adds a decimal point and a zero

• Example:
numberBeforeConvertion = 3
numberAfterConvertion = float(numberBeforeConvertion)
print (type (numberAfterConvertion))

Displays <class 'float'>
print (numberAfterConvertion)

Displays 3.0

Numeric Operations

Name Meaning Example Result

+ Addition 34 + 1 35

- Subtraction 34.0 – 0.1 33.9

* Multiplication 300 * 30 9000

/ Division 1.0 / 2.0 0.5

% Remainder 20 % 3 2

+ Addition 34 + 1 35

- Subtraction 34.0 – 0.1 33.9

* Multiplication 300 * 30 9000

/ Division 1.0 / 2.0 0.5

% Remainder 20 % 3 2

Name Meaning Example Result	

Division, Integer Division and Remainder

• Division operator: /
• will always result in a floating point number
• Example: 5 / 2 yields a floating point number 2.5

• Integer division operator: //
• Example: 5 // 2 yields an integer number 2

• Remainder operator: %
• will result in the remainder of the division
• Example: 5 % 2 yields an integer number 1

• Remainder operation is useful in programming
• Even number % 2 is always 0
• Odd number % 2 is always 1

Division, Integer Division and Remainder

• The result of a division operation is always a floating
point number

• 4 / 2 # Results in 2.0

• The result of an integer division and remainder
operation

• Depends on the types of the numeric literals used in the
operations

Division, Integer Division and Remainder

• If at least one floating point number is used in integer
division and remainder operations

• The result will be a floating point number

• Examples:
• 7 // 3.0 # Results in 2.0
• 7.0 % 3 # Results in 1.0

Division, Integer Division and Remainder

• If two integer numbers are used in integer division and
remainder operations

• The result will be an integer number

• Examples:
• 7 // 3 # Results in 2
• 7 % 3 # Results in 1

In-class Exercise 4
(Self-study – 10 min)

Write a program to obtain minutes and remaining seconds
from an amount of time in seconds.
1) Read in the time in seconds from the user (Example: 200
seconds)
2) Convert 200 seconds => 3 minutes and 20 seconds

In-class Exercise 4 - Answer

Step 1: Read in the time in seconds from the user
timeInSeconds = float(input("Please input the time (in

seconds) and press Enter: "))

Step 2: Convert the time to minutes and seconds
minutes = int (timeInSeconds // 60)
seconds = timeInSeconds % 60

Step 3: Display the result
print(timeInSeconds, "seconds is equal to", minutes,

“minutes and", seconds, “seconds")

Review

• count = 7 / 3 # What is the value stored in count?
A. 1
B. 2
C. 2.3333

• Ans: 2.3333

• test = 7 % 3 # What is the value stored in test?
A. 1
B. 2
C. 2.3333

• Ans: 1

• count = 7 // 3 # What is the value stored in count?
A. 1
B. 2
C. 2.3333

• Ans: 2

• test = 7.5 // 3 # What is the value stored in test?
A. 2.5
B. 2
C. 2.0

• Ans: 2.0

Exponent Operations

• pow (a, b) is used to compute 𝑎𝑎𝑏𝑏

print(pow(2, 3))
Displays 8
print(pow(4, 0.5))
Displays 2.0
print(pow(2.5, 2))
Displays 6.25
print(pow(2.5, -2))
Displays 0.16

Arithmetic Expressions

is translated to

(3+4*x)/5 – 10*(y-5)*(a+b+c)/x + 9*(4/x + (9+x)/y)

)94(9))(5(10
5
43

y
x

xx
cbayx +

++
++−

−
+

How to Evaluate an Expression

• We can safely apply the arithmetic rule for evaluating a
Python expression

3 + 4 * 4 + 5 * (4 + 3) - 1

3 + 4 * 4 + 5 * 7 – 1

3 + 16 + 5 * 7 – 1

3 + 16 + 35 – 1

19 + 35 – 1

 54 - 1

 53

 (1) inside parentheses first

 (2) multiplication

 (3) multiplication

 (4) addition

 (6) subtraction

 (5) addition

 (6) subtraction

 (5) addition

 (4) addition

 (3) multiplication

 (2) multiplication

 (1) inside parentheses first

3 + 4 * 4 + 5 * (4 + 3) - 1

3 + 4 * 4 + 5 * 7 – 1

3 + 16 + 5 * 7 – 1

3 + 16 + 35 – 1

19 + 35 – 1

 54 - 1

 53

Augmented Assignment Operators

• The operators +, -, *, /, and % can be combined with the
assignment operator (=) to form augmented operators

Review

• x = 5
x /= 2 # What is the value stored in x?

A. 2
B. 3
C. 2.5
D. Error

• Ans: C

• test = 5
test += test + 1 # What is the value in test?
A. 6
B. 5
C. 11
D. Error

• Ans: C

• x = 5
x //= 2 # What is the value stored in x?

A. 2
B. 3
C. 2.5
D. Error

• Ans: A

Practice Question 1
Write a program that
1) reads a two digit integer from the user and
2) swap its digits to create a new integer.
For example, if an integer is 93, after swapping it becomes 39.

Practice Question 2
Write a program that
1) reads numbers for radius and length from the user and
2) displays the volume of a cylinder on console.
area = radius * radius * π
volume = area * length

length

radius

Practice Question 3
Write a program that
1) reads the values of x and y from the user and
2) display the following result on console.

𝑦𝑦𝑥𝑥−7 +
𝑥𝑥 + 𝑦𝑦

4
−

2 𝑥𝑥 − 𝑦𝑦 + 3
5

+
𝑦𝑦

3 𝑥𝑥 − 10

Check the result for x=10, y=5 (The answer should be 126.4)

	Chapter 2: Elementary Programming
	Last Week�(Summary)
	“Hello World!” Program
	Statement
	Comments
	Special Symbols
	Programming Errors
	Programming Errors
	Programming Errors
	Chapter 2: Elementary Programming
	In-class Exercise 1�(Group study – 10 min)
	Writing a Simple Program
	Writing a Simple Program
	Writing a Simple Program
	Tracing a Program Execution
	Tracing a Program Execution
	Tracing a Program Execution
	Tracing a Program Execution
	Tracing a Program Execution
	In-class Exercise 2�(Self study - 10 minutes)
	In-class Exercise 2 - Answer
	Review
	Slide Number 23
	Slide Number 24
	Slide Number 25
	In-class Exercise 3�(Practice at home – 10 min)
	Identifiers
	Identifiers
	Variables
	Variables
	Assignment Statements
	Assignment Statements
	Assignment Statements
	Review
	Slide Number 35
	 Numeric Literals
	Numeric Literals
	Numeric Literals - Conversion
	Numeric Literals - Conversion
	Numeric Operations
	Division, Integer Division and Remainder
	Division, Integer Division and Remainder
	Division, Integer Division and Remainder
	Division, Integer Division and Remainder
	In-class Exercise 4�(Self-study – 10 min)
	In-class Exercise 4 - Answer
	Review
	Slide Number 49
	Slide Number 50
	Exponent Operations
	Arithmetic Expressions
	How to Evaluate an Expression
	Augmented Assignment Operators
	Review
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Practice Question 1
	Practice Question 2
	Practice Question 3

