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“Hello World!” Program

# This program prints Hello World! 

print("Hello World!")



Statement

• A statement represents an action or a sequence of  
actions

• The statement print(“Hello World!”) in the program is a 
statement to display the greeting “Hello World!”

# This program prints Hello World! 

print("Hello World!")



Comments

• Line 1 (in green color) is a comment that documents 
what the program is and how it is constructed

• They are not programming statements, and thus are 
ignored by the compiler

# This program prints Hello World! 

print("Hello World!")



Special Symbols

• ( ) i.e. Opening and closing parentheses
• Used with functions and methods

• # i.e. Pound sign
• Precedes a comment line

• “ ” i.e. Opening and closing double quotation marks
• Enclosing a string (i.e. a series of  characters)

# This program prints Hello World! 

print("Hello World!")



Programming Errors

• 1) Syntax Errors
• Detected by the compiler

• 2) Logic Errors
• Produce incorrect results



Programming Errors

Syntax Error

# This program prints Hello World! 

print("Hello World!)

"



Programming Errors

Logic Error

# This program prints the average of 3 + 4

print("Average of 3 and 4 is ")

print(3 + 4 / 2)

Output: Average of  3 and 4 is 5
Correct output: 3.5
Correct way: (3+4)/2 = 3.5
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In-class Exercise 1
(Group study – 10 min)

Write a program that 
1) reads in an input as the radius of  a circle from the user, and
2) calculates and prints the area of  a circle



Writing a Simple Program

• Designing Algorithm: how a problem is solved by 
listing the actions that need to be taken 

• Description can be in natural language or in pseudocode

• Algorithm to calculate area of  a circle:
• Step 1: Read in the circle’s radius from the user
• Step 2: Compute area using the formula:

area = π * radius * radius

• Step 3: Display the result



Writing a Simple Program

• Translating the algorithm into a program

# Step 1: Read in radius from the user

# Step 2: Compute area

# Step 3: Display the area



Writing a Simple Program

# Step 1: Read in radius from the user
radius = input("Please input the radius of  a circle and 

press Enter: ")
radius = float(radius)

# Step 2: Compute area
area = radius * radius * 3.14159

# Step 3: Display the area
print("The area of  a circle with the radius", radius, 

"is", area)



Tracing a Program Execution

# Step 1: Read in radius from the user
radius = input("Please input the radius of  a circle 

and press Enter: ")
radius = float(radius)

# Step 2: Compute area
area = radius * radius * 3.14159

# Step 3: Display the area
print("The area of  a circle with the radius", radius, 

"is", area)

No valueradius

Allocate a memory 
space for radius



Tracing a Program Execution

# Step 1: Read in radius from the user
radius = input("Please input the radius of  a circle 

and press Enter: ")
radius = float(radius)

# Step 2: Compute area
area = radius * radius * 3.14159

# Step 3: Display the area
print("The area of  a circle with the radius", radius, 

"is", area)

7.5radius

Example user input: 
7.5



Tracing a Program Execution

# Step 1: Read in radius from the user
radius = input("Please input the radius of  a circle 

and press Enter: ")
radius = float(radius)

# Step 2: Compute area
area = radius * radius * 3.14159

# Step 3: Display the area
print("The area of  a circle with the radius", radius, 

"is", area)

7.5radius

Convert “7.5” to a 
numeric value



Tracing a Program Execution

# Step 1: Read in radius from the user
radius = input("Please input the radius of  a circle 

and press Enter: ")
radius = float(radius)

# Step 2: Compute area
area = radius * radius * 3.14159

# Step 3: Display the area
print("The area of  a circle with the radius", radius, 

"is", area)

7.5radius

Compute the area and 
assign it to variable area 

area 176.7144375



Tracing a Program Execution

# Step 1: Read in radius from the user
radius = input("Please input the radius of  a circle 

and press Enter: ")
radius = float(radius)

# Step 2: Compute area
area = radius * radius * 3.14159

# Step 3: Display the area
print("The area of  a circle with the radius", radius, 

"is", area)

7.5radius

Display the area

area 176.7144375



In-class Exercise 2
(Self  study - 10 minutes)

Write a program that 
1) reads in a Celsius degree from the user,
2) converts Celsius to Fahrenheit degree, and
3) displays the result

Hint. Fahrenheit = (9 / 5) * Celsius + 32



In-class Exercise 2 - Answer

# Step 1: Read in Celsius degree from the user
celsius = input("Please input the Celsius degree and 

press Enter: ")
celsius = float(celsius)

# Step 2: Convert Celsius to Fahrenheit degree
fahrenheit = (9 / 5) * celsius + 32

# Step 3: Display the result
print("Celsius degree of", celsius, "is equal to", 

fahrenheit, "Fahrenheit degree")



Review



• Q: input( ) statement reads in a value from the user as 
numeric.

A. True
B. False

• Ans: B



• Q: What does the following program print?

radius = 7.5
print(“radius”)

A. 7.5
B. radius

• Ans: B



• Q: What does the following program print?

radius = 7.5
print(radius)

A. 7.5
B. radius

• Ans: A



In-class Exercise 3
(Practice at home – 10 min)

Write a program that 
1) reads three numbers from the user and 
2) displays their average



Identifiers

• Identifiers are the names that identify the elements such 
as variables, constants, methods, classes, and packages in 
a program

• An identifier is a sequence of  characters that consist of  
letters, digits, and underscores (_).

• An identifier must start with a letter, an underscore (_). It 
cannot start with a digit



Identifiers

• An identifier cannot be a reserved keyword
• import, return, except, if, else, …

• An identifier cannot be True or False

• An identifier can be of  any length

• Python is case sensitive
• Area, area, and AREA are all different identifiers



Variables

• The program needs to read the radius entered by the user 
from the keyboard. This raises two important issues:

• Reading the radius
• Storing the radius in the program

• In order to store the radius, the program needs to declare 
a symbol called a variable



Variables

• Variables are used to store values to be used later in a 
program

• They are called variables because their values can be 
changed

• We need to tell the compiler the name of  the variable

• Choose descriptive names for variables
• radius for radius
• area for area



Assignment Statements

• We can assign a value to a variable by using an 
assignment statement

• In Python, the equal sign (=) is used as the assignment 
operator

• The syntax for assignment statements is as follows:

• An expression represents a computation involving values, 
variables, and operators that taking them together, 
evaluates to a value

variable = expression



Assignment Statements

• x = 1             # Assign 1 to x

• radius = 7.5   # Assign 7.5 to radius

• a = “A” # Assign “A” to a

• count = 2       # Assign value 2 to count
count = count + 1  #  Assign addition of  count 

#   and 1 to count



Assignment Statements

• To assign a value to a variable, you must place the 
variable name to the left of  the assignment operator

5 = radius Incorrect!!!

radius = 5 Correct



Review



• Q: Which of  the following are valid identifiers?
A. a
B. +app
C. 3number
D. radiusOfTheCircle
E. $2
F. d+7
G. True

• Ans: A, D



Numeric Literals

• A literal is a constant value that appears directly in a 
program

• For example, 34 and 0.305 are literals in the following 
statements
numberOfYears = 34
weight = 0.305



Numeric Literals

• An integer literal can be assigned to a variable
• integerVariable = 3
• print ( type ( integerVariable ) ) # Displays <class 'int'>

• A floating point literal written with a decimal point
• floatVariable = 3.14
• print ( type ( floatVariable ) ) # Displays <class 'float'>



Numeric Literals - Conversion

• We can convert a floating point literal to an integer literal
• Removes the decimal parts of a float number

• Example:
numberBeforeConvertion = 3.14
numberAfterConvertion = int( numberBeforeConvertion )
print ( type ( numberAfterConvertion ) )

# Displays <class 'int'>
print ( numberAfterConvertion ) 

# Displays 3



Numeric Literals - Conversion

• Similarly, we can convert an integer literal to a float number
• Simply adds a decimal point and a zero

• Example:
numberBeforeConvertion = 3
numberAfterConvertion = float( numberBeforeConvertion )
print ( type ( numberAfterConvertion ) )

# Displays <class 'float'>
print ( numberAfterConvertion ) 

# Displays 3.0



Numeric Operations

 
Name     Meaning          Example      Result                   

 
+        Addition         34 + 1       35  
 
-        Subtraction      34.0 – 0.1   33.9 
 
*        Multiplication   300 * 30     9000 
 
/        Division         1.0 / 2.0    0.5 
 
%        Remainder        20 % 3       2 

 




+        Addition         34 + 1       35 





-        Subtraction      34.0 – 0.1   33.9





*        Multiplication   300 * 30     9000





/        Division         1.0 / 2.0    0.5





%        Remainder        20 % 3       2








Name     Meaning          Example      Result	                 













Division, Integer Division and Remainder

• Division operator: /
• will always result in a floating point number
• Example: 5 / 2 yields a floating point number 2.5

• Integer division operator: //
• Example: 5 // 2 yields an integer number 2

• Remainder operator: %
• will result in the remainder of  the division
• Example: 5 % 2 yields an integer number 1

• Remainder operation is useful in programming
• Even number % 2 is always 0
• Odd number % 2 is always 1



Division, Integer Division and Remainder

• The result of  a division operation is always a floating 
point number

• 4 / 2      # Results in 2.0

• The result of  an integer division and remainder
operation

• Depends on the types of  the numeric literals used in the 
operations



Division, Integer Division and Remainder

• If  at least one floating point number is used in integer 
division and remainder operations 

• The result will be a floating point number

• Examples: 
• 7 // 3.0 # Results in 2.0
• 7.0 % 3 # Results in 1.0



Division, Integer Division and Remainder

• If  two integer numbers are used in integer division and 
remainder operations 

• The result will be an integer number 

• Examples: 
• 7 // 3 # Results in 2
• 7 % 3 # Results in 1



In-class Exercise 4
(Self-study – 10 min)

Write a program to obtain minutes and remaining seconds
from an amount of  time in seconds. 
1) Read in the time in seconds from the user (Example: 200 
seconds)
2) Convert 200 seconds => 3 minutes and 20 seconds



In-class Exercise 4 - Answer

# Step 1: Read in the time in seconds from the user
timeInSeconds = float( input("Please input the time (in 

seconds) and press Enter: ") )

# Step 2: Convert the time to minutes and seconds
minutes = int ( timeInSeconds // 60 )
seconds = timeInSeconds % 60

# Step 3: Display the result
print(timeInSeconds, "seconds is equal to", minutes, 

“minutes and", seconds, “seconds")



Review



• count = 7 / 3   # What is the value stored in count?
A. 1
B. 2
C. 2.3333

• Ans: 2.3333

• test = 7 % 3  # What is the value stored in test?
A. 1
B. 2
C. 2.3333  

• Ans: 1



• count = 7 // 3   # What is the value stored in count?
A. 1
B. 2
C. 2.3333

• Ans: 2

• test = 7.5 // 3  # What is the value stored in test?
A. 2.5
B. 2
C. 2.0

• Ans: 2.0



Exponent Operations

• pow (a, b) is used to compute 𝑎𝑎𝑏𝑏

print(pow(2, 3)) 
# Displays 8 
print(pow(4, 0.5)) 
# Displays 2.0
print(pow(2.5, 2))
# Displays 6.25
print(pow(2.5, -2)) 
# Displays 0.16



Arithmetic Expressions

is translated to 

(3+4*x)/5 – 10*(y-5)*(a+b+c)/x + 9*(4/x + (9+x)/y)
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How to Evaluate an Expression

• We can safely apply the arithmetic rule for evaluating a 
Python expression

 
3 + 4 * 4 + 5 * (4 + 3) - 1  
 
3 + 4 * 4 + 5 * 7 – 1 
 
3 + 16 + 5 * 7 – 1 
 
3 + 16 + 35 – 1 
 
19 + 35 – 1 
 
     54 - 1 
 
     53 

 (1) inside parentheses first 
 

  (2) multiplication 
 

  (3) multiplication 
 

  (4) addition 
 

 

 (6) subtraction 
 

 (5) addition 
 

 




 (6) subtraction











 (5) addition











 (4) addition











 (3) multiplication











 (2) multiplication











 (1) inside parentheses first











3 + 4 * 4 + 5 * (4 + 3) - 1 





3 + 4 * 4 + 5 * 7 – 1





3 + 16 + 5 * 7 – 1





3 + 16 + 35 – 1





19 + 35 – 1





     54 - 1





     53













Augmented Assignment Operators

• The operators +, -, *, /, and % can be combined with the 
assignment operator (=) to form augmented operators



Review



• x = 5
x /= 2 # What is the value stored in x?

A. 2
B. 3
C. 2.5
D. Error

• Ans: C



• test = 5
test += test + 1 # What is the value in test?
A. 6
B. 5
C. 11
D. Error  

• Ans: C



• x = 5
x //= 2 # What is the value stored in x?

A. 2
B. 3
C. 2.5
D. Error

• Ans: A



Practice Question 1
Write a program that 
1) reads a two digit integer from the user and 
2) swap its digits to create a new integer. 
For example, if  an integer is 93, after swapping it becomes 39. 



Practice Question 2
Write a program that 
1) reads numbers for radius and length from the user and
2) displays the volume of  a cylinder on console. 
area = radius * radius * π
volume = area * length 

length

radius



Practice Question 3
Write a program that 
1) reads the values of  x and y from the user and 
2) display the following result on console.

𝑦𝑦𝑥𝑥−7 +
𝑥𝑥 + 𝑦𝑦

4
−

2 𝑥𝑥 − 𝑦𝑦 + 3
5

+
𝑦𝑦

3 𝑥𝑥 − 10

Check the result for x=10, y=5 (The answer should be 126.4)
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